Coexisting Infinite Equilibria and Chaos

被引:36
作者
Li, Chunbiao [1 ,2 ]
Peng, Yuxuan [2 ,3 ]
Tao, Ze [2 ,3 ]
Sprott, Julien Clinton [4 ]
Jafari, Sajad [5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Artificial Intelligence, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Meteorol Observat & Informat Proc, Nanjing 210044, Peoples R China
[4] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[5] Amirkabir Univ Technol, Biomed Engn Fac, 424 Hafez Ave, Tehran 158754413, Iran
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 05期
基金
中国国家自然科学基金;
关键词
Chaotic attractor; infinite equilibria; offset boosting; HIDDEN ATTRACTOR; SYSTEM; FLOWS;
D O I
10.1142/S0218127421300147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Equilibria are a class of attractors that host inherent stability in a dynamic system. Infinite number of equilibria and chaos sometimes coexist in a system with some connections. Hidden chaotic attractors exist independent of any equilibria rather than being excited by them. However, the equilibria can modify, distort, eliminate, or even instead coexist with the chaotic attractor depending on the distance between the equilibria and chaotic attractor. In this paper, chaotic systems with infinitely many equilibria are considered and explored. Extra surfaces of equilibria are introduced into the chaotic flows, showing that a chaotic system can maintain its basic dynamics if the newly added equilibria do not intersect the original attractor. The offset-boostable plane of equilibria rescales the frequency of the chaotic oscillation with an almost linearly modified largest Lyapunov exponent or conversely drives the system into periodic oscillation, even ending in a divergent state. Furthermore, additional infinite number of equilibria or even a solid space of equilibria are safely nested into the chaotic system without destroying the original dynamics, which provides an alternate permanent location for a dynamical system. A circuit simulation agrees with the numerical calculation.
引用
收藏
页数:17
相关论文
共 37 条
[1]   Chaos-based engineering applications with a 3D chaotic system without equilibrium points [J].
Akgul, Akif ;
Calgan, Haris ;
Koyuncu, Ismail ;
Pehlivan, Ihsan ;
Istanbullu, Ayhan .
NONLINEAR DYNAMICS, 2016, 84 (02) :481-495
[2]   Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability [J].
Bao, Bocheng ;
Jiang, Tao ;
Wang, Guangyi ;
Jin, Peipei ;
Bao, Han ;
Chen, Mo .
NONLINEAR DYNAMICS, 2017, 89 (02) :1157-1171
[3]   Coexisting infinitely many attractors in active band-pass filter-based memristive circuit [J].
Bao, Bocheng ;
Jiang, Tao ;
Xu, Quan ;
Chen, Mo ;
Wu, Huagan ;
Hu, Yihua .
NONLINEAR DYNAMICS, 2016, 86 (03) :1711-1723
[4]   Multi-scroll hidden attractors with two stable equilibrium points [J].
Deng, Quanli ;
Wang, Chunhua .
CHAOS, 2019, 29 (09)
[5]   Effects of a geometrical surface disturbance on flow past a circular cylinder: a large-scale spanwise wire [J].
Ekmekci, A. ;
Rockwell, D. .
JOURNAL OF FLUID MECHANICS, 2010, 665 :120-157
[6]   Simple chaotic 3D flows with surfaces of equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Viet-Thanh Pham ;
Volos, Christos ;
Li, Chunbiao .
NONLINEAR DYNAMICS, 2016, 86 (02) :1349-1358
[7]   Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium [J].
Jafari, Sajad ;
Pham, Viet-Thanh ;
Kapitaniak, Tomasz .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (02)
[8]   Simple chaotic flows with a line equilibrium [J].
Jafari, Sajad ;
Sprott, J. C. .
CHAOS SOLITONS & FRACTALS, 2013, 57 :79-84
[9]   Elementary quadratic chaotic flows with no equilibria [J].
Jafari, Sajad ;
Sprott, J. C. ;
Golpayegani, S. Mohammad Reza Hashemi .
PHYSICS LETTERS A, 2013, 377 (09) :699-702
[10]   Generators of quasiperiodic oscillations with three-dimensional phase space [J].
Kuznetsov, A. P. ;
Kuznetsov, S. P. ;
Mosekilde, E. ;
Stankevich, N. V. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (10) :2391-2398