Stable Operation of AlGaN/GaN HEMTs for 25 h at 400C in air

被引:36
作者
Kargarrazi, Saleh [1 ]
Yalamarthy, Ananth Saran [2 ]
Satterthwaite, Peter F. [3 ]
Blankenberg, Scott William [4 ]
Chapin, Caitlin [1 ]
Senesky, Debbie G. [1 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02142 USA
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
HEMTs; MODFETs; Aluminum gallium nitride; Wide band gap semiconductors; Temperature; Temperature measurement; Degradation; Gallium nitride (GaN); high electron mobility transistor (HEMT); high-temperature electronics; HIGH-TEMPERATURE PERFORMANCE;
D O I
10.1109/JEDS.2019.2937008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Extreme environments such as the Venus atmosphere are among the emerging applications that demand electronics that can withstand high-temperature oxidizing conditions. While wide-bandgap technologies for integrated electronics have been developed so far, they either suffer from gate oxide and threshold voltage ($V_{th}$ ) degradation over temperature, large power supply requirements, or intrinsic base current. In this letter, AlGaN/GaN high electron mobility transistors (HEMTs) are suggested as an alternative platform for integrated sensors and analog circuits in extreme environments in oxidizing air atmosphere over a wide temperature range from 22C to 400C. An optimal biasing region, with a peak of transconductance ($g_{m,peak}$ ) at 2.3 V with a negligible shift over the temperature range was observed. Moreover, remarkably low $V_{th}$ variation of 0.9 was observed, enabling the design of analog circuits that can operate over the entire temperature range. Finally, the operation of the devices at 400C and 500C over 25 hours was experimentally studied, demonstrating the stability of the DC characteristics after the 5 hours of burn-in, at 400C.
引用
收藏
页码:931 / 935
页数:5
相关论文
共 40 条
[1]  
Barlow M, 2016, APPL POWER ELECT CO, P1646, DOI 10.1109/APEC.2016.7468087
[2]   Reliability Characteristics and Mechanisms of HRL's T3 GaN Technology [J].
Burnham, Shawn D. ;
Bowen, Ross ;
Tai, Joe ;
Brown, David ;
Grabar, Robert ;
Santos, Dayward ;
Magadia, Jesus ;
Khalaf, Isaac ;
Micovic, Miroslav .
IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2017, 30 (04) :480-485
[3]   GaN-on-Si Power Technology: Devices and Applications [J].
Chen, Kevin J. ;
Haeberlen, Oliver ;
Lidow, Alex ;
Tsai, Chun Lin ;
Ueda, Tetsuzo ;
Uemoto, Yasuhiro ;
Wu, Yifeng .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (03) :779-795
[4]  
Chen P, 2006, STUD NONLINEAR DYN E, V10
[5]  
Chung J. W., 2007, 65th Device Research Conference, P111
[6]   High-temperature performance of AlGaN/GaN HFETs and MOSHFETs [J].
Donoval, D. ;
Florovic, M. ;
Gregusova, D. ;
Kovac, J. ;
Kordos, P. .
MICROELECTRONICS RELIABILITY, 2008, 48 (10) :1669-1672
[7]   500 °C High Current 4H-SiC Lateral BJTs for High-Temperature Integrated Circuits [J].
Elahipanah, Hossein ;
Kargarrazi, Saleh ;
Salemi, Arash ;
Ostling, Mikael ;
Zetterling, Carl-Mikael .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (10) :1429-1432
[8]   Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric [J].
Hashizume, T ;
Ootomo, S ;
Hasegawa, H .
APPLIED PHYSICS LETTERS, 2003, 83 (14) :2952-2954
[9]   GaN-on-insulator technology for high-temperature electronics beyond 400°C [J].
Herfurth, Patrick ;
Maier, David ;
Men, Yakiv ;
Roesch, Rudolf ;
Lugani, Lorenzo ;
Carlin, Jean-Francois ;
Grandjean, Nicolas ;
Kohn, Erhard .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (07)
[10]   Degradation of 2DEG transport properties in GaN-capped AlGaN/GaN heterostructures at 600 °C in oxidizing and inert environments [J].
Hou, Minmin ;
Jain, Sambhav R. ;
So, Hongyun ;
Heuser, Thomas A. ;
Xu, Xiaoqing ;
Suria, Ateeq J. ;
Senesky, Debbie G. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (19)