Multigaps Embedded Nanoassemblies Enhance In Situ Raman Spectroscopy for Intracellular Telomerase Activity Sensing

被引:120
作者
Xu, Liguang [1 ]
Zhao, Sen [1 ]
Ma, Wei [1 ]
Wu, Xiaoling [1 ]
Li, Si [1 ]
Kuang, Hua [1 ]
Wang, Libing [1 ]
Xu, Chuanlai [1 ]
机构
[1] Jiangnan Univ, Sch Food Sci & Technol, State Key Lab Food Sci & Technol, Int Joint Res Lab Biointerface & Biodetect, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CANCER BIOMARKER DETECTION; GOLD NANOPARTICLES; SINGLE-MOLECULE; SCATTERING SERS; DNA DETECTION; ASSEMBLIES; CELLS; NANOSTRUCTURES; DELIVERY; AMPLIFICATION;
D O I
10.1002/adfm.201504587
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The highly sensitive and quantitative biodetection of intracellular telomerase is challenging. A DNA-driven nanoparticle self-assembling pyramid encoding a Raman reporter (Cy5) is reported that detects telomerase in live cells. In the presence of the target, the telomerase primer is extended and the inner DNA chain is replaced, leading to the reduction in the surface-enhanced Raman scattering (SERS) signal and the simultaneous recovery of the fluorescent signal. The SERS signal has a linear range for the detection of telomerase in situ of 1 x 10(-14) to 5 x 10(-11) IU, with a limit of detection of 6.2 x 10(-15) IU. The fluorescent signal is used to confirm the intracellular telomerase activity, demonstrating the efficacy of the designed pyramid probe. This biosensing strategy provides a reliable and ultrasensitive protocol for the quantification of biomarkers in living cells.
引用
收藏
页码:1602 / 1608
页数:7
相关论文
共 61 条
[1]   SERS Detection of Small Inorganic Molecules and Ions [J].
Alvarez-Puebla, Ramon A. ;
Liz-Marzan, Luis M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (45) :11214-11223
[2]   Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers [J].
Chen, Gang ;
Wang, Yong ;
Yang, Miaoxin ;
Xu, Jun ;
Goh, Sook Jin ;
Pan, Ming ;
Chen, Hongyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (11) :3644-+
[3]  
Chen P, 2011, NAT NANOTECHNOL, V6, P639, DOI [10.1038/nnano.2011.141, 10.1038/NNANO.2011.141]
[4]   Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence [J].
Chinen, Alyssa B. ;
Guan, Chenxia M. ;
Ferrer, Jennifer R. ;
Barnaby, Stacey N. ;
Merkel, Timothy J. ;
Mirkin, Chad A. .
CHEMICAL REVIEWS, 2015, 115 (19) :10530-10574
[5]  
Chou LYT, 2014, NAT NANOTECHNOL, V9, P148, DOI [10.1038/nnano.2013.309, 10.1038/NNANO.2013.309]
[6]   Self assembly of plasmonic core-satellite nano-assemblies mediated by hyperbranched polymer linkers [J].
Dey, Priyanka ;
Zhu, Shaoli ;
Thurecht, Kristofer J. ;
Fredericks, Peter M. ;
Blakey, Idriss .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (19) :2827-2837
[7]   Target-Cell-Specific Delivery, Imaging, and Detection of Intracellular MicroRNA with a Multifunctional SnO2 Nanoprobe [J].
Dong, Haifeng ;
Lei, Jianping ;
Ju, Huangxian ;
Zhi, Feng ;
Wang, Hua ;
Guo, Wenjie ;
Zhu, Zhu ;
Yan, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (19) :4607-4612
[8]   Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis [J].
Faulds, K ;
Smith, WE ;
Graham, D .
ANALYTICAL CHEMISTRY, 2004, 76 (02) :412-417
[9]   Antitags: Nanostructured Tools for Developing SERS-Based ELISA Analogs [J].
Guarrotxena, Nekane ;
Liu, Bin ;
Fabris, Laura ;
Bazan, Guillermo C. .
ADVANCED MATERIALS, 2010, 22 (44) :4954-+
[10]   Plasmons in Strongly Coupled Metallic Nanostructures [J].
Halas, Naomi J. ;
Lal, Surbhi ;
Chang, Wei-Shun ;
Link, Stephan ;
Nordlander, Peter .
CHEMICAL REVIEWS, 2011, 111 (06) :3913-3961