Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage

被引:1
作者
Chen, Xike [1 ]
Yamashita, Akihiro [1 ]
Morioka, Miho [1 ]
Senba, Toshika [1 ]
Kamatani, Takashi [1 ]
Watanabe, Akira [2 ]
Kosai, Azuma [1 ]
Tsumaki, Noriyuki [1 ]
机构
[1] Kyoto Univ, Dept Clin Applicat, Ctr iPS Cell Res & Applicat, Cell Induct & Regulat Field, Kyoto, Japan
[2] Kyoto Univ, Dept Life Sci Frontiers, Ctr iPS Cell Res & Applicat, Kyoto, Japan
关键词
cartilage; iPS cells; perichondrium; FGF; chondrocyte; SKELETAL DYSPLASIA; GENE-EXPRESSION; CHONDROCYTES;
D O I
10.1089/ten.tea.2018.0133
中图分类号
Q813 [细胞工程];
学科分类号
摘要
New cell and tissue sources are needed for the regenerative treatment of articular cartilage damage. Human induced pluripotent stem cells (hiPSCs) are an abundant cell source due to their self-renewal capacity. Hyaline cartilage tissue particles derived from hiPSCs (hiPS-Carts), 1-3mm in diameter, are one candidate source that can be used for transplantation. When transplanted to fill the defects of articular cartilage, hiPS-Carts form a repair tissue by integrating with each other and with adjacent host tissue. In this study, we analyzed the integration capacity using an in vitro model and found that hiPS-Carts spontaneously integrate with each other in vitro. hiPS-Carts consist of cartilage at the center and perichondrium-like membrane that wraps around the cartilage. The integration started at the perichondrium-like membrane at around 1 week. Then, the integration progressed to the cartilage within 4-8 weeks. RNA sequencing analysis identified a higher expression of FGF18 in the perichondrium-like membrane in hiPS-Carts compared with the central cartilage. The addition of FGF18 to the model accelerated the integration of hiPS-Carts, whereas the addition of a FGFR inhibitor inhibited it. These results suggest that FGF18 secreted from the perichondrium-like membrane plays a role in the integration of hiPS-Carts. Understanding the integration mechanism of hiPS-Carts is expected to contribute to the realization of regenerative treatment for patients with articular cartilage damage.
引用
收藏
页码:437 / 445
页数:9
相关论文
共 50 条
  • [11] Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells
    Lin, Yang
    Gil, Chang-Hyun
    Yoder, Mervin C.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2017, 37 (11) : 2014 - 2025
  • [12] Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Pekkanen-Mattila, Mari
    Hakli, Martta
    Polonen, Risto-Pekka
    Mansikkala, Tuomas
    Junnila, Anni
    Talvitie, Elina
    Koivisto, Janne T.
    Kellomaki, Minna
    Aalto-Setala, Katriina
    MATERIALS, 2019, 12 (11)
  • [13] Generation and Applications of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells
    Zhao, Chengzhu
    Ikeya, Makoto
    STEM CELLS INTERNATIONAL, 2018, 2018
  • [14] Human Induced Pluripotent Stem Cell-Derived Models to Investigate Human Cytomegalovirus Infection in Neural Cells
    D'Aiuto, Leonardo
    Di Maio, Roberto
    Heath, Brianna
    Raimondi, Giorgio
    Milosevic, Jadranka
    Watson, Annie M.
    Bamne, Mikhil
    Parks, W. Tony
    Yang, Lei
    Lin, Bo
    Miki, Toshio
    Mich-Basso, Jocelyn Danielle
    Arav-Boger, Ravit
    Sibille, Etienne
    Sabunciyan, Sarven
    Yolken, Robert
    Nimgaonkar, Vishwajit
    PLOS ONE, 2012, 7 (11):
  • [15] Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cell Seeding on Calcium Phosphate Scaffold for Bone Regeneration
    Tang, Minghui
    Chen, Wenchuan
    Liu, Jun
    Weir, Michael D.
    Cheng, Linzhao
    Xu, Hockin H. K.
    TISSUE ENGINEERING PART A, 2014, 20 (7-8) : 1295 - 1305
  • [16] A Refined Culture System for Human Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Organoids
    Takahashi, Yu
    Sato, Shintaro
    Kurashima, Yosuke
    Yamamoto, Tomohisa
    Kurokawa, Shiho
    Yuki, Yoshikazu
    Takemura, Naoki
    Uematsu, Satoshi
    Lai, Chen-Yi
    Otsu, Makoto
    Matsuno, Hiroshi
    Osawa, Hideki
    Mizushima, Tsunekazu
    Nishimura, Junichi
    Hayashi, Mikio
    Yamaguchi, Takayuki
    Kiyono, Hiroshi
    STEM CELL REPORTS, 2018, 10 (01): : 314 - 328
  • [17] Human embryos from induced pluripotent stem cell-derived gametes: ethical and quality considerations
    Ilic, Dusko
    Ogilvie, Caroline
    Noli, Laila
    Kolundzic, Nikola
    Khalaf, Yacoub
    REGENERATIVE MEDICINE, 2017, 12 (06) : 681 - 691
  • [18] Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools
    Acimovic, Ivana
    Vilotic, Aleksandra
    Pesl, Martin
    Lacampagne, Alain
    Dvorak, Petr
    Rotrekl, Vladimir
    Meli, Albano C.
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [19] Defining the Integration Capacity of Embryonic Stem Cell-Derived Photoreceptor Precursors
    West, Emma L.
    Gonzalez-Cordero, Anai
    Hippert, Claire
    Osakada, Fumitaka
    Martinez-Barbera, Juan Pedro
    Pearson, Rachael A.
    Sowden, Jane C.
    Takahashi, Masayo
    Ali, Robin R.
    STEM CELLS, 2012, 30 (07) : 1424 - 1435
  • [20] Pharmacokinetic functions of human induced pluripotent stem cell-derived small intestinal epithelial cells
    Kabeya, Tomoki
    Mima, Shinji
    Imakura, Yuki
    Miyashita, Toshihide
    Ogura, Izumi
    Yamada, Tadanori
    Yasujima, Tomoya
    Yuasa, Hiroaki
    Iwao, Takahiro
    Matsunaga, Tamihide
    DRUG METABOLISM AND PHARMACOKINETICS, 2020, 35 (04) : 374 - 382