Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling

被引:24
作者
Lambert, Romain S. C. [1 ]
Lemke, Frank [2 ]
Kucherenko, Sergei S. [1 ]
Song, Shufang [1 ,3 ]
Shah, Nilay [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, Ctr Proc Syst Engn, South Kensington Campus, London SW7 2AZ, England
[2] KnowledgeMiner Software, D-13187 Berlin, Germany
[3] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Global sensitivity analysis; High dimensional model representations; Sobol indices; Group method of data handling; INDEXES;
D O I
10.1016/j.matcom.2016.04.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the parameter selection capabilities of the group method of data handling (GMDH) as an inductive self-organizing modelling method are used to construct sparse random sampling high dimensional model representations (RS-HDMR), from which the Sobol's first and second order global sensitivity indices can be derived. The proposed method is capable of dealing with high-dimensional problems without the prior use of a screening technique and can perform with a relatively limited number of function evaluations, even in the case of under-determined modelling problems. Four classical benchmark test functions are used for the evaluation of the proposed technique. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 54
页数:13
相关论文
共 32 条
[1]  
[Anonymous], MATH COMPUT MODEL DY
[2]  
[Anonymous], 1971, 23 U KENT DEP STAT
[3]   Adaptive sparse polynomial chaos expansion based on least angle regression [J].
Blatman, Geraud ;
Sudret, Bruno .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (06) :2345-2367
[4]   Efficient computation of global sensitivity indices using sparse polynomial chaos expansions [J].
Blatman, Geraud ;
Sudret, Bruno .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2010, 95 (11) :1216-1229
[5]   Sensitivity analysis: A review of recent advances [J].
Borgonovo, Emanuele ;
Plischke, Elmar .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 248 (03) :869-887
[6]   High dimensional model representation for stochastic finite element analysis [J].
Chowdhury, R. ;
Adhikari, S. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (12) :3917-3932
[7]   Stochastic free vibration analysis of angle-ply composite plates - A RS-HDMR approach [J].
Dey, Sudip ;
Mukhopadhyay, Tanmoy ;
Adhikari, Sondipon .
COMPOSITE STRUCTURES, 2015, 122 :526-536
[8]   A new method on ANN for variance based importance measure analysis of correlated input variables [J].
Hao, Wenrui ;
Lu, Zhenzhou ;
Wei, Pengfei ;
Feng, Jun ;
Wang, Bintuan .
STRUCTURAL SAFETY, 2012, 38 :56-63
[9]   Importance measures in global sensitivity analysis of nonlinear models [J].
Homma, T ;
Saltelli, A .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 52 (01) :1-17
[10]  
Iooss B., 2015, UNCERTAINTY MANAGEME, V2015, P101, DOI DOI 10.1007/978-1-4899-7547-8_5