On base sizes for algebraic groups

被引:22
作者
Burness, Timothy C. [1 ]
Guralnick, Robert M. [2 ]
Saxl, Jan [3 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Base size; simple algebraic groups; primitive permutation groups; generic stabilizer; FINITE CLASSICAL-GROUPS; SEMISIMPLE CONJUGACY CLASSES; FIXED-POINT SPACES; PERMUTATION-GROUPS; ESSENTIAL DIMENSION; PARTITION ACTIONS; SYMMETRIC-GROUPS; LIE TYPE; SUBGROUPS; CONJECTURE;
D O I
10.4171/JEMS/718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a permutation group on a set Omega. A subset of Omega is a base for G if its point-wise stabilizer is trivial; the base size of G is the minimal cardinality of a base. In this paper we initiate the study of bases for algebraic groups defined over an algebraically closed field. In particular, we calculate the base size for all primitive actions of simple algebraic groups, obtaining the precise value in almost all cases. We also introduce and study two new base measures, which arise naturally in this setting. We give an application concerning the essential dimension of simple algebraic groups, and we establish several new results on base sizes for the corresponding finite groups of Lie type. The latter results are an important contribution to the classical study of bases for finite primitive permutation groups. We also indicate some connections with generic stabilizers for representations of simple algebraic groups.
引用
收藏
页码:2269 / 2341
页数:73
相关论文
共 74 条
[1]  
[Anonymous], 1966, Inst. Hautes Etudes Sci. Publ. Math., P255
[2]  
[Anonymous], MEM AM MATH SOC
[3]  
ASCHBACHER M, 1976, NAGOYA MATH J, V63, P1
[4]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[5]   ON THE STRUCTURE OF PARABOLIC SUBGROUPS [J].
AZAD, H ;
BARRY, M ;
SEITZ, G .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (02) :551-562
[6]   Base size, metric dimension and other invariants of groups and graphs [J].
Bailey, Robert F. ;
Cameron, Peter J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :209-242
[7]   The minimum length of a base for the symmetric group acting on partitions [J].
Benbenishty, Carmit ;
Cohen, Jonathan A. ;
Niemeyer, Alice C. .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (06) :1575-1581
[8]  
Bhargava M., 2013, Tata Inst. Fundam. Res. Stud. Math., V22, P23
[9]  
Bhargava M, 2016, CAMB J MATH, V4, P1
[10]  
Bhargava M, 2015, PROG MATH, V312, P139, DOI 10.1007/978-3-319-23443-4_5