On nontrivial solutions of nonlinear Schrodinger equations with sign-changing potential

被引:12
作者
Chen, Wei [1 ,2 ]
Wu, Yue [1 ]
Jhang, Seongtae [2 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276000, Shandong, Peoples R China
[2] Univ Suwon, Coll Informat Technol, Hwaseong Si 18323, South Korea
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Superlinear; Potential well; Variational methods;
D O I
10.1186/s13662-021-03390-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the superlinear Schrodinger equation with bounded potential well. The potential here is allowed to be sign-changing. Without assuming the Ambrosetti-Rabinowitz-type condition, we prove the existence of a nontrivial solution and multiplicity results.
引用
收藏
页数:10
相关论文
共 20 条
[1]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[2]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[3]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[4]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216
[5]   Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms [J].
Ding, YH ;
Lee, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) :137-163
[6]   A positive solution for an asymptotically linear elliptic problem on RN autonomous at infinity [J].
Jeanjean, L ;
Tanaka, K .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (24) :597-614
[7]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[8]   Existence of solutions for an elliptic equation with indefinite weight [J].
Jing, Zeng ;
Li Yongqing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (11) :2512-2519
[9]  
Kryszewski W., 1998, ADV DIFFER EQU, V3, P441, DOI DOI 10.57262/ADE/1366399849
[10]   Ground states of nonlinear Schrodinger equations with potentials [J].
Li, Yongqing ;
Wang, Zhi-Qiang ;
Zeng, Jing .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (06) :829-837