Finite groups that need more generators than any proper quotient

被引:50
作者
Dalla Volta, F
Lucchini, A
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Brescia, Dipartimento Elettron Automaz, I-25123 Brescia, Italy
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1998年 / 64卷
关键词
D O I
10.1017/S1446788700001312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A structure theorem is proved for finite groups with the property that, for some integer m with m greater than or equal to 2, every proper quotient group can be generated by m elements but the group itself cannot.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 16 条
[1]   SOME APPLICATIONS OF THE 1ST COHOMOLOGY GROUP [J].
ASCHBACHER, M ;
GURALNICK, R .
JOURNAL OF ALGEBRA, 1984, 90 (02) :446-460
[2]   PRESENTATION RANK OF A DIRECT PRODUCT OF FINITE-GROUPS [J].
COSSEY, J ;
GRUENBER.KW ;
KOVACS, LG .
JOURNAL OF ALGEBRA, 1974, 28 (03) :597-603
[3]  
Gaschutz W., 1959, ILLINOIS J MATH, V3, P469
[4]  
Gaschutz W., 1954, Mathematische Zeitschrift, V60, P274, DOI [10.1007/bf01187377, 10.1007/BF01187377, DOI 10.1007/BF01187377]
[5]  
Gaschutz W., 1955, MATH NACHR, V14, P249
[6]  
GRUENBERG KW, 1976, 25 CBMS
[7]  
Gruenberg KW., 1976, S MATH, V17, P215
[8]  
Hall P., 1936, QUARTERLY J MATHEMAT, V7, P134, DOI DOI 10.1093/QMATH/OS-7.1.134
[9]  
KIMMERLE W, 1984, ARCH MATH, V42, P214, DOI 10.1007/BF01191178
[10]   GENERATORS AND MINIMAL NORMAL-SUBGROUPS [J].
LUCCHINI, A .
ARCHIV DER MATHEMATIK, 1995, 64 (04) :273-276