Finite groups that need more generators than any proper quotient

被引:50
作者
Dalla Volta, F
Lucchini, A
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Brescia, Dipartimento Elettron Automaz, I-25123 Brescia, Italy
来源
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS | 1998年 / 64卷
关键词
D O I
10.1017/S1446788700001312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A structure theorem is proved for finite groups with the property that, for some integer m with m greater than or equal to 2, every proper quotient group can be generated by m elements but the group itself cannot.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 16 条
  • [1] SOME APPLICATIONS OF THE 1ST COHOMOLOGY GROUP
    ASCHBACHER, M
    GURALNICK, R
    [J]. JOURNAL OF ALGEBRA, 1984, 90 (02) : 446 - 460
  • [2] PRESENTATION RANK OF A DIRECT PRODUCT OF FINITE-GROUPS
    COSSEY, J
    GRUENBER.KW
    KOVACS, LG
    [J]. JOURNAL OF ALGEBRA, 1974, 28 (03) : 597 - 603
  • [3] Gaschutz W., 1959, ILLINOIS J MATH, V3, P469
  • [4] Gaschutz W., 1954, Mathematische Zeitschrift, V60, P274, DOI [10.1007/bf01187377, 10.1007/BF01187377, DOI 10.1007/BF01187377]
  • [5] Gaschutz W., 1955, MATH NACHR, V14, P249
  • [6] GRUENBERG KW, 1976, 25 CBMS
  • [7] Gruenberg KW., 1976, S MATH, V17, P215
  • [8] Hall P., 1936, QUARTERLY J MATHEMAT, V7, P134, DOI DOI 10.1093/QMATH/OS-7.1.134
  • [9] KIMMERLE W, 1984, ARCH MATH, V42, P214, DOI 10.1007/BF01191178
  • [10] GENERATORS AND MINIMAL NORMAL-SUBGROUPS
    LUCCHINI, A
    [J]. ARCHIV DER MATHEMATIK, 1995, 64 (04) : 273 - 276