Lithium Metal Battery Using LiFe0.5Mn0.5PO4 Olivine Cathode and Pyrrolidinium-Based Ionic Liquid Electrolyte

被引:14
作者
Di Lecce, Daniele [1 ]
Hassoun, Jusef [1 ,2 ]
机构
[1] Univ Ferrara, Dept Chem & Pharmaceut Sci, Via Fossato Mortara 17, I-44121 Ferrara, Italy
[2] Univ Ferrara, Natl Interuniv Consortium Mat Sci & Technol INSTM, Res Unit, Via Fossato Mortara 17, I-44121 Ferrara, Italy
来源
ACS OMEGA | 2018年 / 3卷 / 08期
关键词
ENERGY-STORAGE; ANODE; LI;
D O I
10.1021/acsomega.8b01328
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ionic liquids (ILs) represent the most suitable electrolyte media for a safe application in high-energy lithium metal batteries because of their remarkable thermal stability promoted by the room-temperature molten salt nature. In this work, we exploit this favorable characteristic by combining a pyrrolidinium-based electrolyte and a LiFe0.5Mn0.5PO4 mixed olivine cathode in a lithium metal cell. The IL solution, namely N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr(14)TFSI) dissolving LiTFSI, is designed as viscous electrolyte, particularly suited for cells operating at temperatures higher than 40 degrees C, as demonstrated by electrochemical impedance spectroscopy. The olivine electrode, characterized by remarkable structural stability at high temperature, is studied in the lithium metal cell using the Pyr(14)TFSI-LiTFSI medium above the room temperature. The Li/Pyr(14)TFSI-LiTFSI/LiFe0.5Mn0.5PO4 cell delivers a capacity of about 100 mA h g-1 through two voltage plateaus at about 3.5 and 4.1 V, ascribed to the iron and manganese redox reaction, respectively. The cycling stability, satisfactory levels of the energy density, and a relevant safety content suggest the cell studied herein as a viable energy storage system for future applications.
引用
收藏
页码:8583 / 8588
页数:6
相关论文
共 35 条
  • [1] A Lithium-Ion Battery based on an Ionic Liquid Electrolyte, Tin-Carbon Nanostructured Anode, and Li2O-ZrO2-Coated Li[Ni0.8Co0.15Al0.05]O2 Cathode
    Agostini, Marco
    Ulissi, Ulderico
    Di Lecce, Daniele
    Ahiara, Yuichi
    Ito, Seitaro
    Hassoun, Jusef
    [J]. ENERGY TECHNOLOGY, 2015, 3 (06) : 632 - 637
  • [2] Future generations of cathode materials: an automotive industry perspective
    Andre, Dave
    Kim, Sung-Jin
    Lamp, Peter
    Lux, Simon Franz
    Maglia, Filippo
    Paschos, Odysseas
    Stiaszny, Barbara
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) : 6709 - 6732
  • [3] Thermal stability and flammability of electrolytes for lithium-ion batteries
    Arbizzani, Catia
    Gabrielli, Giulio
    Mastragostino, Marina
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4801 - 4805
  • [4] Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/nmat2448, 10.1038/NMAT2448]
  • [5] Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 206 - 218
  • [6] A NONLINEAR LEAST-SQUARES FIT PROCEDURE FOR ANALYSIS OF IMMITTANCE DATA OF ELECTROCHEMICAL SYSTEMS
    BOUKAMP, BA
    [J]. SOLID STATE IONICS, 1986, 20 (01) : 31 - 44
  • [7] A PACKAGE FOR IMPEDANCE ADMITTANCE DATA-ANALYSIS
    BOUKAMP, BA
    [J]. SOLID STATE IONICS, 1986, 18-9 (pt 1) : 136 - 140
  • [8] Relevant Features of a Triethylene Glycol Dimethyl Ether-Based Electrolyte for Application in Lithium Battery
    Carbone, Lorenzo
    Di Lecce, Daniele
    Gobet, Mallory
    Munoz, Stephen
    Devany, Matthew
    Greenbaum, Steve
    Hassoun, Jusef
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (20) : 17086 - 17096
  • [9] Quaternary Polyethylene Oxide Electrolytes Containing Ionic Liquid for Lithium Polymer Battery
    Di Girolamo, Diego
    Panero, Stefania
    Navarra, Maria Assunta
    Hassoun, Jusef
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (07) : A1175 - A1180
  • [10] A multiple electrolyte concept for lithium-metal batteries
    Di Lecce, Daniele
    Sharova, Varvara
    Jeong, Sangsik
    Moretti, Arianna
    Passerini, Stefano
    [J]. SOLID STATE IONICS, 2018, 316 : 66 - 74