Fracture performance and numerical simulation of basalt fiber concrete using three-point bending test on notched beam

被引:104
作者
Sun, Xinjian [1 ,3 ]
Gao, Zhen [1 ]
Cao, Peng [2 ]
Zhou, Changjun [4 ]
Ling, Yifeng [5 ]
Wang, Xuhao [6 ]
Zhao, Yawei [1 ]
Diao, Mushuang [1 ]
机构
[1] Qinghai Univ, Sch Hydraul & Elect Engn, Xining, Qinghai, Peoples R China
[2] Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing, Peoples R China
[3] State Key Lab Plateau Ecol & Agr, Xining, Qinghai, Peoples R China
[4] Dalian Univ Technol, Sch Transportat & Logist, Dalian, Peoples R China
[5] Iowa State Univ, Inst Transportat, Natl Concrete Pavement Technol Ctr, Ames, IA USA
[6] Changan Univ, Sch Highway, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
BFRC; Three-point bending; Fracture performance; Numerical simulation; Size effect; REINFORCED CONCRETE; STEEL FIBERS; BEHAVIOR; INTERFACE; DAMAGE; MODEL;
D O I
10.1016/j.conbuildmat.2019.07.244
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, three-point bending tests on precast notched beam and multiscale numerical simulation were used to evaluate and predict the effect of different Basalt Fiber (BF) dosages on the fracture resistance performance for Basalt Fiber Reinforced Concrete (BFRC). The three-point bending test was performed on a series of the notched beams in different sizes and volumetric fiber dosage to obtain the Load-Crack Mouth Opening Displacement (P-CMOD) curves during the loading process. The fracture energy and the double-K fracture parameters were calculated from P-CMOD curves to investigate the influences of fiber volume fraction and beam size on fracture parameters of BFRC. The results indicate that the numerical simulation results are in good coherence with the experimental results. The increase of BF dosage could markedly increase the peak load and the fracture energy of concrete. There was no size effect on fracture energy. Based on the two-parameter fracture theory, the initiation toughness had size effect and increased with the rise of specimen height, while size effect was not significant for unstable toughness. With the augment of fiber dosage, the initiation toughness increased linearly. The unstable toughness varied irregularly with the alteration of fiber dosage but higher than that of ordinary concrete. In addition, this paper developed a homogenization algorithm based on Mori-Tanaka and a multi-scale finite element simulation based on continuum progressive damage theory to evaluate and predict the fracture behavior of BFRC with different sizes and fiber volumetric dosages. The calculated P-CMOD curves from this algorithm were in good agreement with those from experiments and revealed the effects of fiber dosage and size effect on fracture behavior for BFRC. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:788 / 800
页数:13
相关论文
共 46 条
[1]   Fiber-reinforced asphalt-concrete - A review [J].
Abtahi, Sayyed Mandi ;
Sheikhzadeh, Mohammad ;
Hejazi, Sayyed Mandi .
CONSTRUCTION AND BUILDING MATERIALS, 2010, 24 (06) :871-877
[2]  
[Anonymous], 2010, CECS132009, P35
[3]  
[Anonymous], 2014, DLT51002014
[4]  
[Anonymous], 2015, DLT53302015 CHIN EL
[5]   Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement [J].
ArsIan, Mehmet Emin .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 114 :383-391
[6]   Self compactability of high volume hybrid fiber reinforced concrete [J].
Aydin, Abdulkadir Cuneyt .
CONSTRUCTION AND BUILDING MATERIALS, 2007, 21 (06) :1149-1154
[7]   Fiber-matrix interaction at early ages of concrete with short fibers [J].
Barluenga, Gonzalo .
CEMENT AND CONCRETE RESEARCH, 2010, 40 (05) :802-809
[8]  
Bazant P., 1983, Matr. Constr, V16, P155, DOI DOI 10.1007/BF02486267
[9]   POSITIVE INTERACTION OF INDUSTRIAL AND RECYCLED STEEL FIBRES IN FIBRE REINFORCED CONCRETE [J].
Bjegovic, Dubravka ;
Baricevic, Ana ;
Lakusic, Stjepan ;
Damjanovic, Domagoj ;
Duvnjak, Ivan .
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2013, 19 :S50-S60
[10]   Experimental and numerical characterization of the bond behavior of steel fibers recovered from waste tires embedded in cementitious matrices [J].
Caggiano, Antonio ;
Xargay, Hernan ;
Folino, Paula ;
Martinelli, Enzo .
CEMENT & CONCRETE COMPOSITES, 2015, 62 :146-155