Equilibrium and least element problems for multivalued functions

被引:3
作者
Allevi, E. [3 ]
Gnudi, A. [4 ]
Schaible, S. [1 ]
Vespucci, M. T. [2 ]
机构
[1] Chung Yuan Christian Univ, Dept Appl Math, Chungli 32023, Taiwan
[2] Bergamo Univ, Dept Informat Engn & Math Models, I-24044 Dalmine, Italy
[3] Univ Brescia, Dept Quantitat Methods, Brescia, Italy
[4] Bergamo Univ, Dept Math Stat Informat & Applicat, I-24129 Bergamo, Italy
关键词
Least element problem; Equilibrium problem; Nonlinear problem; Pseudomonotonicity; Z-bifunction; Feasible set; LINEAR COMPLEMENTARITY-PROBLEMS; EQUIVALENCE; EXISTENCE;
D O I
10.1007/s10898-009-9440-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The principal aim of this paper is to extend some recent results which concern problems involving bifunctions to similar generalized problems for multivalued bifunctions. To this end, by using the appropriate notions of strict pseudomonotonicity we establish the relationships between generalized vector equilibrium problems and generalized minimal element problems of feasible sets. Moreover relationships between generalized least element problems of feasible sets and generalized vector equilibrium problems are studied by employing the concept of Z-multibifunctions.
引用
收藏
页码:561 / 569
页数:9
相关论文
共 8 条
[1]   On the equivalence of extended generalized complementarity and generalized least-element problems [J].
Ansari, QH ;
Lai, TC ;
Yao, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (02) :277-288
[2]   Existence of solutions for a generalized vector quasivariational inequality [J].
Chen, GY ;
Li, SJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (02) :321-334
[3]   EQUIVALENCE OF LINEAR COMPLEMENTARITY-PROBLEMS AND LINEAR-PROGRAMS IN VECTOR LATTICE HILBERT-SPACES [J].
CRYER, CW ;
DEMPSTER, MAH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (01) :76-90
[4]   Equivalence of equilibrium problems and least element problems [J].
Fang, Y.-P. ;
Huang, N.-J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 132 (03) :411-422
[5]   Vector equilibrium problems, minimal element problems and least element problems [J].
Fang, Ya-ping ;
Huang, Nan-jing .
POSITIVITY, 2007, 11 (02) :251-268
[6]   Existence of solutions for generalized vector equilibrium problems [J].
Konnov, IV ;
Yao, JC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (01) :328-335
[8]   ON THE EQUIVALENCE OF NONLINEAR COMPLEMENTARITY-PROBLEMS AND LEAST-ELEMENT PROBLEMS [J].
SCHAIBLE, S ;
YAO, JC .
MATHEMATICAL PROGRAMMING, 1995, 70 (02) :191-200