On the Aharonov-Bohm Hamiltonian

被引:108
作者
Adami, R [1 ]
Teta, A
机构
[1] SISSA, I-34014 Trieste, Italy
[2] Univ Rome La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Hamiltonians; Aharonov-Bohm effect; theory of self-adjoint extensions;
D O I
10.1023/A:1007330512611
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the theory of self-adjoint extensions, we construct all the possible Hamiltonians describing the nonrelativistic Aharonov-Bohm effect. In general, the resulting Hamiltonians are not rotationally invariant so that the angular momentum is not a constant of motion. Using an explicit formula for the resolvent, we describe the spectrum and compute the generalized eigenfunctions and the scattering amplitude.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 15 条
[1]  
ADAMI R, 1996, THESIS U PISA
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]  
AKHIEZER NI, 1963, THEORY LINEAR OPERAT
[4]  
ALVEVERIO S, 1988, SOLVABLE MODELS QUAN
[5]  
[Anonymous], 1978, METHODS MODERN MATH
[6]   DEFICIENCY-INDEXES AND SINGULAR BOUNDARY-CONDITIONS IN QUANTUM-MECHANICS [J].
BULLA, W ;
GESZTESY, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (10) :2520-2528
[7]   ON NONLOCAL POINT INTERACTIONS IN ONE, 2, AND 3 DIMENSIONS [J].
DABROWSKI, L ;
GROSSE, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (11) :2777-2780
[8]  
DABROWSKI L, 1996, PREPRINT SISSA
[9]   Statistics in space dimension two [J].
DellAntonio, G ;
Figari, R ;
Teta, A .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 40 (03) :235-256
[10]  
GIACCONI P, 1995, DFUB956