HERMITE-HADAMARD TYPE INEQUALITIES FOR m-CONVEX AND (α, m)-CONVEX STOCHASTIC PROCESSES

被引:0
作者
Ozcan, Serap [1 ]
机构
[1] Kirklareli Univ, Fac Arts & Sci, Dept Math, TR-39100 Kirklareli, Turkey
关键词
convex stochastic process; m-convex stochastic process; (alpha; m)-convex stochastic process; mean-square integral; Hermite-Hadamard type inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the concepts of m-convex and (alpha, m)-convex stochastic processes are introduced. Several new inequalities of Hermite-Hadamard type for differentiable m-convex and (alpha, m)-convex stochastic processes are established. The results obtained in this work are the generalizations of the known results.
引用
收藏
页码:793 / 802
页数:10
相关论文
共 18 条
[1]   Variants of Cebysev's inequality with applications [J].
Bakula, M. Klaricic ;
Matkovic, A. ;
Pecaric, J. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
[2]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[3]  
Gonzalez L., 2015, Math. Aeterna, V5, P745
[4]  
Iscan I, 2017, NEW TRENDS MATH SCI, V5, P180
[5]  
Klaricic Bakula M., 2008, J. Ineq. Pure Appl. Math, V9, P12
[6]   Remarks on strongly convex stochastic processes [J].
Kotrys, Dawid .
AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) :91-98
[7]  
Li LB, 2017, AEQUATIONES MATH, V91, P909, DOI 10.1007/s00010-017-0488-5
[8]  
Mihesan VG., 1993, SEMINAR FUNCTIONAL E
[9]  
Nikodem K, 1980, AEQUATIONES MATH, V20, P184, DOI 10.1007/BF02190513
[10]  
Okur N., 2019, Int. J. Optim. Control Theor. Appl, V9, P148, DOI [10.11121/ijocta.01.2019.00602, DOI 10.11121/IJOCTA.01.2019.00602]