Polydopamine/ZnO electron transport layers enhance charge extraction in inverted non-fullerene organic solar cells

被引:67
作者
Ahmad, Nafees [1 ,2 ]
Zhang, Xuning [1 ,3 ]
Yang, Shuo [1 ,2 ]
Zhang, Dongyang [1 ,3 ]
Wang, Jianqiu [1 ]
Zafar, Saud Uz [1 ,2 ]
Li, Yanxun [1 ,2 ]
Zhang, Yuan [3 ]
Hussain, Sabir [1 ,2 ]
Cheng, Zhihai [4 ]
Kumaresan, Anbu [1 ,2 ]
Zhou, Huiqiong [1 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Beihang Univ, Sch Chem, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
[4] Renmin Univ China, Dept Phys, Beijing Key Lab Optoelect Funct Mat & Micronano D, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
UNDERWATER ADHESION MECHANISM; THIN-FILMS; POLYMER; PERFORMANCE; DEPOSITION; INTERLAYER; CONVERSION; COATINGS; CATECHOL;
D O I
10.1039/c9tc02781e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The cathode interlayer plays a key role in the photovoltaic performance in organic solar cells. In this work, we demonstrate that polydopamine/ZnO can be used as efficient electron transport layers (ETL) in inverted non-fullerene organic solar cells. In comparison to the devices with the ZnO ETL, the power conversion efficiency of inverted PBDBT:ITIC solar cells with the PDA/ZnO ETL can be boosted from 10.15% to 11.14%, due to the simultaneously enhanced open-circuit voltage, short-circuit current and fill factor. The increased photovoltaic performance is mainly attributed to a faster charge extraction ability at the cathode interface and longer carrier lifetime, confirmed by transient optoelectrical analyses. Revealed by conductive-AFM and KPFM coupled with absorption spectroscopy, high optical transmittance and vertical electrical conductivity with a suitable low work function and a doping effect induced by PDA were observed in the PDA modified ZnO, which makes it a good ETL material for inverted solar cells and indicated universal applicability. This work provides a new approach to modify the cathode interfacial properties towards high efficiency organic solar cells with non-fullerene acceptors.
引用
收藏
页码:10795 / 10801
页数:7
相关论文
共 50 条
[11]   Functionality of Non-Fullerene Electron Acceptors in Ternary Organic Solar Cells [J].
Zhu, Tao ;
Zheng, Luyao ;
Xiao, Zuo ;
Meng, Xianyi ;
Liu, Lei ;
Ding, Liming ;
Gong, Xiong .
SOLAR RRL, 2019, 3 (12)
[12]   Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors [J].
Liu, Baiqiao ;
Xu, Yunhua ;
Xia, Dongdong ;
Xiao, Chengyi ;
Yang, Zhaofan ;
Li, Weiwei .
ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (03) :1-16
[13]   Scalable fabrication of organic solar cells based on non-fullerene acceptors [J].
Gertsen, Anders S. ;
Castro, Marcial Fernandez ;
Sondergaard, Roar R. ;
Andreasen, Jens W. .
FLEXIBLE AND PRINTED ELECTRONICS, 2020, 5 (01)
[14]   Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells [J].
Ge, Congwu ;
Wu, Wenting ;
Hu, Lin ;
Hu, Yonghui ;
Zhou, Yinhua ;
Li, Wei-Shi ;
Gao, Xike .
ORGANIC ELECTRONICS, 2018, 61 :113-118
[15]   Non-Fullerene Organic Electron Transport Materials toward Stable and Efficient Inverted Perovskite Photovoltaics [J].
Wang, Han ;
Zhang, Chenyang ;
Yao, Yiguo ;
Cheng, Caidong ;
Wang, Kai .
SMALL, 2024, 20 (43)
[16]   The role of bulk and interfacial morphology in charge generation, recombination, and extraction in non-fullerene acceptor organic solar cells [J].
Karki, Akchheta ;
Vollbrecht, Joachim ;
Gillett, Alexander J. ;
Xiao, Steven Shuyong ;
Yang, Yali ;
Peng, Zhengxing ;
Schopp, Nora ;
Dixon, Alana L. ;
Yoon, Sangcheol ;
Schrock, Max ;
Ade, Harald ;
Reddy, G. N. Manjunatha ;
Friend, Richard H. ;
Nguyen, Thuc-Quyen .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3679-3692
[17]   Simple non-fullerene electron acceptors with unfused core for organic solar cells [J].
Li, Yao ;
Xu, Yunhua ;
Yang, Fan ;
Jiang, Xudong ;
Li, Cheng ;
You, Shengyong ;
Li, Weiwei .
CHINESE CHEMICAL LETTERS, 2019, 30 (01) :222-224
[18]   Non-Fullerene Organic Electron-Transporting Materials for Perovskite Solar Cells [J].
Jung, Su-Kyo ;
Lee, David S. ;
Ann, Myung Hyun ;
Im, Sang Hyuk ;
Kim, Jong H. ;
Kwon, O-Pil .
CHEMSUSCHEM, 2018, 11 (22) :3882-3892
[19]   Simple mono-halogenated perylene diimides as non-fullerene electron transporting materials in inverted perovskite solar cells with ZnO nanoparticle cathode buffer layers [J].
Wu, Jhao-lin ;
Huang, Wen-Kuan ;
Chang, Yu-Chia ;
Tsai, Bo-Chou ;
Hsiao, Yu-Cheng ;
Chang, Chih-Yu ;
Chen, Chin-Ti ;
Chen, Chao-Tsen .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12811-12821
[20]   Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss [J].
Xiao, Jingyang ;
Chen, Ziming ;
Zhang, Guichuan ;
Li, Qing-Ya ;
Yin, Qingwu ;
Jiang, Xiao-Fang ;
Huang, Fei ;
Xu, Yun-Xiang ;
Yip, Hin-Lap ;
Cao, Yong .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (16) :4457-4463