Uncertainty-aware forecast interval for hourly PV power output

被引:7
作者
Lee, HyunYong [1 ]
Kim, Nac-Woo [1 ]
Lee, Jun-Gi [1 ]
Lee, Byung-Tak [1 ]
机构
[1] Elect & Telecommun Res Inst, Honam Res Ctr, 176-11 Cheonmdan Gwagi Ro, Gwangju, South Korea
关键词
learning (artificial intelligence); load forecasting; probability; photovoltaic power systems; regression analysis; forecasting theory; time series; previous forecast results; forecasting accuracy; effective interval; point forecasts; inefficient interval; unnecessarily wide interval; accurate forecast; available deterministic forecasting model; forecast uncertainty-aware forecast interval; forecast accuracy-related uncertainty metric; available deep learning forecasting models; PREDICTION INTERVALS; SOLAR POWER; IRRADIANCE; ENSEMBLE; GENERATION; ENERGY;
D O I
10.1049/iet-rpg.2019.0300
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A forecast interval is effective for handling the forecast uncertainty in solar photovoltaic systems. In estimating the forecast interval, most available approaches apply an identical policy to all the point forecasts. This results in an inefficient interval (e.g. an unnecessarily wide interval for an accurate forecast). They also adopt a complex model and even require modification of the available deterministic forecasting model, which may adversely affect their application. To overcome these limitations, the authors introduce a forecast uncertainty-aware forecast interval. They calculate a forecast accuracy-related uncertainty metric from an ensemble method based on the dropout technique. The dropout technique is widely used in deep learning models. This implies that the proposed approach can be applied to available deep learning forecasting models without modifying them. Using the uncertainty metric and relevant data of previous forecast results, they estimate the uncertainty-aware forecast interval. Through experiments using real-world data, they first demonstrate the close relation of their uncertainty metric to the forecasting accuracy. Then, they demonstrate that the uncertainty-aware forecast interval reduces the mean interval length by up to 25.7% and decreases the prediction interval coverage probability by 4.07%, compared to available approaches. This illustrates that their approach results in an effective interval.
引用
收藏
页码:2656 / 2664
页数:9
相关论文
共 4 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
[Anonymous], 2011, P ACM SIGKDD CA US A
[3]   A Probabilistic Competitive Ensemble Method for Short-Term Photovoltaic Power Forecasting [J].
Bracale, Antonio ;
Carpinelli, Guido ;
De Falco, Pasquale .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (02) :551-560
[4]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]