Volunteer Assisted Collaborative Offloading and Resource Allocation in Vehicular Edge Computing

被引:105
|
作者
Zeng, Feng [1 ]
Chen, Qiao [1 ]
Meng, Lin [2 ]
Wu, Jinsong [3 ,4 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Ritsumeikan Univ, Dept Elect & Comp Engn, Kusatsu 5258577, Japan
[3] Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin 541004, Peoples R China
[4] Univ Chile, Dept Comp Sci, Santiago 8370451, Chile
基金
美国国家科学基金会;
关键词
Vehicular edge computing; volunteer assisted; stackelberg game; resource allocation; offloading;
D O I
10.1109/TITS.2020.2980422
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As a promising new paradigm, Vehicular Edge Computing (VEC) can improve the QoS of vehicular applications by computation offloading. However, with more and more computation-intensive vehicular applications, VEC servers face the challenges of limited resources. In this paper, we study how to effectively and economically utilize the idle resources in volunteer vehicles to handle the overloaded tasks in VEC servers. First, we present a model of volunteer assisted vehicular edge computing, in which the cost and utility functions are defined for requesting vehicles and VEC servers, and volunteer vehicles are encouraged to assist the overloaded VEC servers via obtaining rewards from VEC servers. Then, based on Stackelberg game, we analyze the interactions between requesting vehicles and VEC servers, and find the optimal strategies for them. Furthermore, we prove theoretically that the Stackelberg game between requesting vehicles and VEC servers has a unique Stackelberg equilibrium, and propose a fast searching algorithm based on genetic algorithm to find the best pricing strategy for the VEC server. In addition, to maximize the reward of volunteer vehicles, we propose the volunteer task assignment algorithm for optimal mapping between the tasks and volunteer alliances. Finally, the effectiveness of the proposed scheme is demonstrated through a large number of simulations. Compared with other schemes, the proposed scheme can reduce the offloading cost of vehicles and improve the utility of VEC servers.
引用
收藏
页码:3247 / 3257
页数:11
相关论文
共 50 条
  • [1] Computation Offloading and Resource Allocation For Cloud Assisted Mobile Edge Computing in Vehicular Networks
    Zhao, Junhui
    Li, Qiuping
    Gong, Yi
    Zhang, Ke
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 7944 - 7956
  • [2] Distributed Task Offloading and Resource Allocation in Vehicular Edge Computing
    Li, Shichao
    Chen, Hongbin
    Lin, Siyu
    Zhang, Ning
    2020 INTERNATIONAL CONFERENCE ON SPACE-AIR-GROUND COMPUTING (SAGC 2020), 2020, : 13 - 18
  • [3] Joint Offloading and Resource Allocation for Scalable Vehicular Edge Computing
    Wu, Wei
    Wang, Qie
    Wu, Xuanli
    Zhang, Ning
    2020 IEEE 92ND VEHICULAR TECHNOLOGY CONFERENCE (VTC2020-FALL), 2020,
  • [4] Joint Offloading and Resource Allocation in Vehicular Edge Computing and Networks
    Dai, Yueyue
    Xu, Du
    Maharjan, Sabita
    Zhang, Yan
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [5] HAT: Task Offloading and Resource Allocation in RIS-Assisted Collaborative Edge Computing
    Tan, Lin
    Guo, Songtao
    Zhou, Pengzhan
    Kuang, Zhufang
    Jiao, Xianlong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 4665 - 4678
  • [6] Collaborative Computation Offloading and Resource Allocation in Satellite Edge Computing
    Wang, Ruisong
    Zhu, Weichen
    Liu, Gongliang
    Ma, Ruofei
    Zhang, Di
    Mumtaz, Shahid
    Cherkaoui, Soumaya
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5625 - 5630
  • [7] Joint computation offloading and resource allocation in vehicular edge computing networks
    Shuang Liu
    Jie Tian
    Chao Zhai
    Tiantian Li
    Digital Communications and Networks, 2023, 9 (06) : 1399 - 1410
  • [8] Joint computation offloading and resource allocation in vehicular edge computing networks
    Liu, Shuang
    Tian, Jie
    Zhai, Chao
    Li, Tiantian
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (06) : 1399 - 1410
  • [9] Task offloading and resource allocation for intersection scenarios in vehicular edge computing
    Zhang, Benhong
    Zhu, Chenchen
    Jin, Limei
    Bi, Xiang
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 42 (01) : 1 - 14
  • [10] Joint offloading decision and resource allocation in vehicular edge computing networks
    Wang, Shumo
    Song, Xiaoqin
    Xu, Han
    Song, Tiecheng
    Zhang, Guowei
    Yang, Yang
    Digital Communications and Networks, 2025, 11 (01) : 71 - 82