On a time-dependent grade-two fluid model in two dimensions

被引:9
作者
Girault, V. [1 ]
Saadouni, A. [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
关键词
decoupled semi-discrete scheme; construction of Galerkin solution; unconditional existence of global solution;
D O I
10.1016/j.camwa.2006.02.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a weak solution of a time-dependent grade-two fluid model in a plane Lipschitz domain and uniqueness of the solution in a convex polygon. The method of proof is constructive and can be adapted to the numerical analysis of finite-element schemes for solving this problem numerically. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:347 / 360
页数:14
相关论文
共 19 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
AMROUCHE C, 1986, THESIS PARIS 6
[3]  
[Anonymous], SCM
[4]   Weak and classical solutions of a family of second grade fluids [J].
Cioranescu, D ;
Girault, V .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (02) :317-335
[5]  
CIORANESCU D, 1984, RES NOTES MATH, V109, P178
[6]  
Cioranescu D., 1984, NOTE CRAS 1, V298, P285
[7]   FLUIDS OF DIFFERENTIAL TYPE - CRITICAL-REVIEW AND THERMODYNAMIC ANALYSIS [J].
DUNN, JE ;
RAJAGOPAL, KR .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1995, 33 (05) :689-729
[8]   THERMODYNAMICS, STABILITY, AND BOUNDEDNESS OF FLUIDS OF COMPLEXITY-2 AND FLUIDS OF SECOND GRADE [J].
DUNN, JE ;
FOSDICK, RL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1974, 56 (03) :191-252
[9]  
ERICKSEN JL, 1955, ARCH RATION MECH AN, V4, P323
[10]  
FOSDICK RL, 1979, ARCH RATION MECH AN, V70, P145, DOI 10.1007/BF00250351