On steady-state disturbance compensability for actuator placement in adaptive structures

被引:39
作者
Wagner, Julia Laura [1 ]
Gade, Jan [2 ]
Heidingsfeld, Michael [1 ]
Geiger, Florian [2 ]
von Scheven, Malte [2 ]
Boehm, Michael [1 ]
Bischoff, Manfred [2 ]
Sawodny, Oliver [1 ]
机构
[1] Univ Stuttgart, Inst Syst Dynam, Waldburgstr 19, D-70563 Stuttgart, Germany
[2] Univ Stuttgart, Inst Struct Mech, Pfaffenwaldring 7, D-70563 Stuttgart, Germany
关键词
adaptive structures; actuator placement; steady-state disturbance compensability; redundancy; statical indeterminacy; OPTIMIZATION; SYSTEMS;
D O I
10.1515/auto-2017-0099
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive structures in civil engineering are mechanical structures with the ability to modify their response to external loads. Actuators strongly affect a structure's adaptivity and have to be placed thoughtfully in the design process to effectively compensate external loads. For constant loads, this property is introduced as steady-state disturbance compensability. This property can be linked to concepts from structural engineering such as redundancy or statical indeterminacy, thus representing an interdisciplinary approach. Based on the disturbance compensability matrix, a scalar performance metric is derived as quantitative measure of a structure's ability to compensate the output error for arbitrary constant disturbances with a given set of actuators. By minimizing this metric, an actuator configuration is determined. The concept is applied to an example of a truss structure.
引用
收藏
页码:591 / 603
页数:13
相关论文
共 50 条
  • [31] Self-assembly of porous Cu structures during steady-state condensation of weakly supersaturated vapors
    Perekrestov, V. I.
    Kosminska, Yu. O.
    Kornyushchenko, A. S.
    Latyshev, V. M.
    JOURNAL OF POROUS MATERIALS, 2014, 21 (06) : 1159 - 1167
  • [32] A steady-state target calculation method based on "point" model for integrating processes
    Pang, Qiang
    Zou, Tao
    Zhang, Yanyan
    Cong, Qiumei
    ISA TRANSACTIONS, 2015, 56 : 196 - 205
  • [33] Nonequilibrium Steady-State Fluctuations in Actively Cooled Resonators
    Bonaldi, M.
    Conti, L.
    De Gregorio, P.
    Rondoni, L.
    Vedovato, G.
    Vinante, A.
    Bignotto, M.
    Cerdonio, M.
    Falferi, P.
    Liguori, N.
    Longo, S.
    Mezzena, R.
    Ortolan, A.
    Prodi, G. A.
    Salemi, F.
    Taffarello, L.
    Vitale, S.
    Zendri, J. -P.
    PHYSICAL REVIEW LETTERS, 2009, 103 (01)
  • [34] Fast Implementation of Steady-State NSGA-II
    Mishra, Surtut
    Mondal, Samrat
    Saha, Sripama
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3777 - 3784
  • [35] Steady-state simulation and optimization of an air cooled chiller
    dos Santos, Catarina G.
    Ruivo, Julia P.
    Gasparini, Leticia B.
    Rosa, Maria Thereza de M. G.
    Odloak, Darci
    de Gouvea, Miriam Tvrzska
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 36
  • [36] Steady-state robustness of qualitative gene regulation networks
    Breindl, C.
    Waldherr, S.
    Wittmann, D. M.
    Theis, F. J.
    Allgoewer, F.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (15) : 1742 - 1758
  • [37] Steady-state data reconciliation for absorption refrigeration systems
    Martinez-Maradiaga, David
    Carles Bruno, Joan
    Coronas, Alberto
    APPLIED THERMAL ENGINEERING, 2013, 51 (1-2) : 1170 - 1180
  • [38] A steady-state analysis method for optimal operation of dividing-wall column
    Luo, Junwen
    Xu, Chunjian
    Zhang, Yawen
    Yan, Kaixin
    Zhu, Jesse
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 119 : 112 - 127
  • [39] Steady-State Dead-Time Compensation in VSI
    Abronzini, Umberto
    Attaianese, Ciro
    D'Arpino, Matilde
    Di Monaco, Mauro
    Tomasso, Giuseppe
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (09) : 5858 - 5866
  • [40] Effective temperature in steady-state dynamics from holography
    Kundu, Arnab
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):