Deep learning for high-impedance fault detection and classification: transformer-CNN

被引:20
作者
Rai, Khushwant [1 ]
Hojatpanah, Farnam [1 ]
Ajaei, Firouz Badrkhani [1 ]
Guerrero, Josep M. [2 ]
Grolinger, Katarina [1 ]
机构
[1] Univ Western Ontario, Dept Elect & Comp Engn, 1151 Richmond St, London, ON N6A 3K7, Canada
[2] Aalborg Univ, Dept Energy Technol, Fredrik Bajers Vej 7K, DK-9220 Aalborg OST, Denmark
基金
加拿大自然科学与工程研究理事会;
关键词
High-impedance fault detection; Deep learning; Transformer network; Convolutional neural network; Power system protection; INTELLIGENCE; ACCURACY; LOCATION; WAVELET;
D O I
10.1007/s00521-022-07219-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-impedance faults (HIFs) exhibit low current amplitude and highly diverse characteristics, which make them difficult to be detected by conventional overcurrent relays. Various machine learning (ML) techniques have been proposed to detect and classify HIFs; however, these approaches are not reliable in presence of diverse HIF and non-HIF conditions and, moreover, rely on resource-intensive signal processing techniques. Consequently, this paper proposes a novel HIF detection and classification approach based on a state-of-the-art deep learning model, the transformer network, stacked with the Convolutional neural network (CNN). While the transformer network learns the complex HIF pattern in the data, the CNN enhances the generalization to provide robustness against noise. A kurtosis analysis is employed to prevent false detection of non-fault disturbances (e.g., capacitor and load switching) and nonlinear loads as HIFs. The performance of the proposed HIF detection and classification approach is evaluated using the IEEE 13-node test feeder. The results demonstrate that the proposed protection method reliably detects and classifies HIFs, is robust against noise, and outperforms the state-of-the-art techniques.
引用
收藏
页码:14067 / 14084
页数:18
相关论文
共 50 条
  • [21] Detection of High-Impedance Fault in Distribution Networks Using Frequency-Band Energy Curve
    Bai, Hao
    Gao, Jian-Hong
    Li, Wei
    Wang, Kang
    Guo, Mou-Fa
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 427 - 436
  • [22] A hybrid CNN architecture for skin lesion classification using deep learning
    Jasil, S. P. Godlin
    Ulagamuthalvi, V.
    SOFT COMPUTING, 2023,
  • [23] High-impedance fault detection in electrical power distribution systems using moving sum approach
    Sarwagya, Kumari
    De, Sourav
    Nayak, Paresh Kumar
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2018, 12 (01) : 1 - 8
  • [24] Sustainable Deep Learning at Grid Edge for Real-Time High Impedance Fault Detection
    Sirojan, Tharmakulasingam
    Lu, Shibo
    Phung, B. T.
    Zhang, Daming
    Ambikairajah, Eliathamby
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2022, 7 (02): : 346 - 357
  • [25] PERFORMANCE OF HIGH-IMPEDANCE FAULT-DETECTION ALGORITHMS IN LONG-TERM FIELD TRIALS
    RUSSELL, BD
    BENNER, CL
    ELECTRIC POWER SYSTEMS RESEARCH, 1994, 31 (02) : 71 - 77
  • [26] Detection and Classification of High Impedance Fault in Power Distribution System using Hybrid Technique
    Narasimhulu, N.
    Kumar, D. V. Ashok
    Kumar, M. Vijay
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (08)
  • [27] Detection of High Impedance Fault using Machine Learning Techniques
    Shihabudheen, K., V
    Kunju, Bijuna
    Ahammed, Imthias
    Guruvarurappan, Akshay
    Jose, Jibin
    Keerthana, D.
    Revathi, P. B.
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 2117 - 2122
  • [28] An improved high-impedance fault identification scheme for distribution networks based on kernel extreme learning machine
    Sheng, Wanxing
    Liu, Keyan
    Jia, Dongli
    Wang, Yao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155
  • [29] High-Impedance Fault Detection Method Based on Stochastic Resonance For a Distribution Network With Strong Background Noise
    Wang, Xiaowei
    Wei, Xiangxiang
    Gao, Jie
    Song, Guobing
    Kheshti, Mostafa
    Guo, Liang
    IEEE TRANSACTIONS ON POWER DELIVERY, 2022, 37 (02) : 1004 - 1016
  • [30] Application of signal processing techniques and intelligent classifiers for high-impedance fault detection in ensuring the reliable operation of power distribution systems
    Varghese, P. Rini
    Subathra, M. S. P.
    George, S. Thomas
    Kumar, Nallapaneni Manoj
    Suviseshamuthu, Easter Selvan
    Deb, Sanchari
    FRONTIERS IN ENERGY RESEARCH, 2023, 11