Deep learning for high-impedance fault detection and classification: transformer-CNN

被引:20
作者
Rai, Khushwant [1 ]
Hojatpanah, Farnam [1 ]
Ajaei, Firouz Badrkhani [1 ]
Guerrero, Josep M. [2 ]
Grolinger, Katarina [1 ]
机构
[1] Univ Western Ontario, Dept Elect & Comp Engn, 1151 Richmond St, London, ON N6A 3K7, Canada
[2] Aalborg Univ, Dept Energy Technol, Fredrik Bajers Vej 7K, DK-9220 Aalborg OST, Denmark
基金
加拿大自然科学与工程研究理事会;
关键词
High-impedance fault detection; Deep learning; Transformer network; Convolutional neural network; Power system protection; INTELLIGENCE; ACCURACY; LOCATION; WAVELET;
D O I
10.1007/s00521-022-07219-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-impedance faults (HIFs) exhibit low current amplitude and highly diverse characteristics, which make them difficult to be detected by conventional overcurrent relays. Various machine learning (ML) techniques have been proposed to detect and classify HIFs; however, these approaches are not reliable in presence of diverse HIF and non-HIF conditions and, moreover, rely on resource-intensive signal processing techniques. Consequently, this paper proposes a novel HIF detection and classification approach based on a state-of-the-art deep learning model, the transformer network, stacked with the Convolutional neural network (CNN). While the transformer network learns the complex HIF pattern in the data, the CNN enhances the generalization to provide robustness against noise. A kurtosis analysis is employed to prevent false detection of non-fault disturbances (e.g., capacitor and load switching) and nonlinear loads as HIFs. The performance of the proposed HIF detection and classification approach is evaluated using the IEEE 13-node test feeder. The results demonstrate that the proposed protection method reliably detects and classifies HIFs, is robust against noise, and outperforms the state-of-the-art techniques.
引用
收藏
页码:14067 / 14084
页数:18
相关论文
共 50 条
  • [11] High Impedance Fault Detection by Convolutional Deep Neural Network
    Sirojan, Tharmakulasingam
    Lu, Shibo
    Phung, B. T.
    Zhang, Daming
    Ambikairajah, Eliathamby
    2018 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2018,
  • [12] A Novel High-Impedance Fault Detection Technique in Smart Active Distribution Systems
    Dubey, Kartika
    Jena, Premalata
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (05) : 4861 - 4872
  • [13] Active High-Impedance Fault Detection Method for Resonant Grounding Distribution Networks
    Yao, Zhiwei
    Liu, Yang
    Chen, Jian
    Ji, Jinpeng
    Zhang, Mengdi
    Gong, Yanyong
    IEEE ACCESS, 2024, 12 : 10932 - 10945
  • [14] Deep learning based gasket fault detection: a CNN approach
    Shiney, S. Arumai
    Seetharaman, R.
    Sharmila, V. J.
    Prathiba, S.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [15] CNN-Based Transformer Model for Fault Detection in Power System Networks
    Thomas, Jibin B.
    Chaudhari, Saurabh G.
    Shihabudheen, K. V.
    Verma, Nishchal K.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [16] Land Cover Classification of UAV Remote Sensing Based on Transformer-CNN Hybrid Architecture
    Lu, Tingyu
    Wan, Luhe
    Qi, Shaoqun
    Gao, Meixiang
    SENSORS, 2023, 23 (11)
  • [17] Proposition of an interharmonic-based methodology for high-impedance fault detection in distribution systems
    Macedo, Jose Rubens
    Resende, Jose Wilson
    Bissochi, Carlos Augusto, Jr.
    Carvalho, Daniel
    Castro, Fernando C.
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2015, 9 (16) : 2593 - 2601
  • [18] A hybrid method for high impedance fault classification and detection
    Moloi, K.
    Jordaan, J. A.
    Hamam, Y.
    2019 SOUTHERN AFRICAN UNIVERSITIES POWER ENGINEERING CONFERENCE/ROBOTICS AND MECHATRONICS/PATTERN RECOGNITION ASSOCIATION OF SOUTH AFRICA (SAUPEC/ROBMECH/PRASA), 2019, : 548 - 552
  • [19] Deep Learning CNN Framework for Detection and Classification of Internet Worms
    Rao, Mundlamuri Venkata
    Midhunchakkaravarthy, Divya
    Dandu, Sujatha
    JOURNAL OF INTERCONNECTION NETWORKS, 2022, 22 (SUPP03)
  • [20] High-Impedance Non-Linear Fault Detection via Eigenvalue Analysis with low PMU Sampling Rates
    Paramo, Gian
    Bretas, Arturo
    Meyn, Sean
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,