Focused-Ion-Beam-Milled Carbon Nanoelectrodes for Scanning Electrochemical Microscopy

被引:42
作者
Chen, Ran [1 ]
Hu, Keke [2 ]
Yu, Yun [2 ]
Mirkin, Michael V. [2 ]
Amemiya, Shigeru [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
[2] CUNY Queens Coll, Dept Chem & Biochem, Flushing, NY 11367 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HETEROGENEOUS ELECTRON-TRANSFER; ORIENTED PYROLYTIC-GRAPHITE; IN-SITU; FABRICATION; TIP; PROBES; NANOPROBES; PLATINUM; KINETICS; SECM;
D O I
10.1149/2.0071604jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanoscale scanning electrochemical microscopy (SECM) has emerged as a powerful electrochemical method that enables the study of interfacial reactions with unprecedentedly high spatial and kinetic resolution. In this work, we develop carbon nanoprobes with high electrochemical reactivity and well-controlled size and geometry based on chemical vapor deposition of carbon in quartz nanopipets. Carbon-filled nanopipets are milled by focused ion beam (FIB) technology to yield flat disk tips with a thin quartz sheath as confirmed by transmission electron microscopy. The extremely high electroactivity of FIB-milled carbon nanotips is quantified by very high standard electron-transfer rate constants of >= 10 cm/s for Ru(NH3)(6)(3+). The tip size and geometry are characterized in electrolyte solutions by SECM approach curve measurements not only to determine inner and outer tip radii of down to similar to 27 and similar to 38 nm, respectively, but also to ensure the absence of a conductive carbon layer on the outer wall. In addition, FIB-milled carbon nanotips reveal the limited conductivity of similar to 100 nm-thick gold films under nanoscale mass-transport conditions. Importantly, carbon nanotips must be protected from electrostatic damage to enable reliable and quantitative nanoelectrochemical measurements. (C) 2015 The Electrochemical Society.
引用
收藏
页码:H3032 / H3037
页数:6
相关论文
共 55 条
[1]   Electrochemical Nanoprobes for Single-Cell Analysis [J].
Actis, Paolo ;
Tokar, Sergiy ;
Clausmeyer, Jan ;
Babakinejad, Babak ;
Mikhaleva, Sofya ;
Cornut, Renaud ;
Takahashi, Yasufumi ;
Cordoba, Ainara Lopez ;
Novak, Pavel ;
Shevchuck, Andrew I. ;
Dougan, Jennifer A. ;
Kazarian, Sergei G. ;
Gorelkin, Petr V. ;
Erofeev, Alexander S. ;
Yaminsky, Igor V. ;
Unwin, Patrick R. ;
Schuhmann, Wolfgang ;
Klenerman, David ;
Rusakov, Dmitri A. ;
Sviderskaya, Elena V. ;
Korchev, Yuri E. .
ACS NANO, 2014, 8 (01) :875-884
[2]   Scanning electrochemical microscopy. 40. Voltammetric ion-selective micropipet electrodes for probing ion transfer at bilayer lipid membranes [J].
Amemiya, S ;
Bard, AJ .
ANALYTICAL CHEMISTRY, 2000, 72 (20) :4940-4948
[3]  
Amemiya S, 2016, ELECTROANAL CHEM, V26, P1
[4]   Lithium Ion Quantification Using Mercury Amalgams as in Situ Electrochemical Probes in Nonaqueous Media [J].
Barton, Zachary J. ;
Rodriguez-Lopez, Joaquin .
ANALYTICAL CHEMISTRY, 2014, 86 (21) :10660-10667
[5]   Resistive-Pulse Measurements with Nanopipettes: Detection of Vascular Endothelial Growth Factor C (VEGF-C) Using Antibody-Decorated Nanoparticles [J].
Cai, Huijing ;
Wang, Yixian ;
Yu, Yun ;
Mirkin, Michael V. ;
Bhakta, Snehasis ;
Bishop, Gregory W. ;
Joshi, Amit A. ;
Rusling, James F. .
ANALYTICAL CHEMISTRY, 2015, 87 (12) :6403-6410
[6]   Electrodeposition of platinum on nanometer-sized carbon electrodes [J].
Chen, SL ;
Kucernak, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (33) :8392-8402
[7]   New analytical approximation of feedback approach curves with a microdisk SECM tip and irreversible kinetic reaction at the substrate [J].
Cornut, R. ;
Lefrou, C. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 621 (02) :178-184
[8]   Nanoelectrodes: Recent Advances and New Directions [J].
Cox, Jonathan T. ;
Zhang, Bo .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 5, 2012, 5 :253-272
[9]   Bipolar Electrochemistry [J].
Fosdick, Stephen E. ;
Knust, Kyle N. ;
Scida, Karen ;
Crooks, Richard M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (40) :10438-10456
[10]   Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks [J].
Gueell, Aleix G. ;
Ebejer, Neil ;
Snowden, Michael E. ;
McKelvey, Kim ;
Macpherson, Julie V. ;
Unwin, Patrick R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) :11487-11492