The determinant representation of the gauge transformation operators

被引:34
作者
He, JS [1 ]
Li, YS [1 ]
Cheng, Y [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
gauge transformation; determinant; KP hierarchy;
D O I
10.1142/S0252959902000444
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The determinant representation of the gauge transformation operators is establised. In this process, the generalized Wronskian determinant is introduced. As a simple application, the authors present a construction of the special tau-function obtained firstly by Chan et al. (Commun. Math. Phys., 149(1992), 263), which involves the generalized Wronskian determinant. Also, some properties of this determinant are given.
引用
收藏
页码:475 / 486
页数:12
相关论文
共 19 条
[1]   BIRKHOFF STRATA, BACKLUND-TRANSFORMATIONS, AND REGULARIZATION OF ISOSPECTRAL OPERATORS [J].
ADLER, M ;
VANMOERBEKE, P .
ADVANCES IN MATHEMATICS, 1994, 108 (01) :140-204
[2]  
[Anonymous], 1991, SOLITON EQUATIONS HA
[3]   DARBOUX-BACKLUND SOLUTIONS OF SL(P,Q) KP-KDV HIERARCHIES, CONSTRAINED GENERALIZED TODA-LATTICES, AND 2-MATRIX STRING MODEL [J].
ARATYN, H ;
NISSIMOV, E ;
PACHEVA, S .
PHYSICS LETTERS A, 1995, 201 (04) :293-305
[4]  
ARATYN H, CONSTRAINED KP HIERA
[5]   SOLVING THE KP HIERARCHY BY GAUGE TRANSFORMATIONS [J].
CHAU, LL ;
SHAW, JC ;
YEN, HC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :263-278
[6]   Solving the constrained KP hierarchy by gauge transformations [J].
Chau, LL ;
Shaw, JC ;
Tu, MH .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) :4128-4137
[7]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26
[8]   MODIFYING THE KP, THE N(TH) CONSTRAINED KP HIERARCHIES AND THEIR HAMILTONIAN STRUCTURES [J].
CHENG, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) :661-682
[9]  
Date E., 1983, Non-Linear Integrable Systems - Classical Theory and Quantum Theory. Proceedings of RIMS Symposium, P39
[10]   (1+1)-DIMENSIONAL INTEGRABLE SYSTEMS AS SYMMETRY CONSTRAINTS OF (2+1)-DIMENSIONAL SYSTEMS [J].
KONOPELCHENKO, B ;
SIDORENKO, J ;
STRAMPP, W .
PHYSICS LETTERS A, 1991, 157 (01) :17-21