Lines on quartic surfaces

被引:18
作者
Degtyarev, Alex [1 ]
Itenberg, Ilia [2 ,3 ]
Sertoz, Ali Sinan [1 ]
机构
[1] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Univ Paris 06, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75252 Paris 5, France
[3] Ecole Normale Super, Dept Math & Applicat, 45 Rue Ulm, F-75230 Paris 5, France
基金
日本学术振兴会;
关键词
K3; SURFACES; RATIONAL CURVES;
D O I
10.1007/s00208-016-1484-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the maximal number of (real) lines in a (real) nonsingular spatial quartic surface is 64 (respectively, 56). We also give a complete projective classification of all quartics containing more than 52 lines: all such quartics are pro-jectively rigid. Any value not exceeding 52 can appear as the number of lines of an appropriate quartic.
引用
收藏
页码:753 / 809
页数:57
相关论文
共 28 条
[1]   Geography of irreducible plane sextics [J].
Akyol, Aysegul ;
Degtyarev, Alex .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 :1307-1337
[2]  
[Anonymous], 1986, Disquisitiones arithmeticae
[3]  
BARTH W, 1985, LECT NOTES MATH, V1124, P21
[4]  
BEAUVILLE A, 1985, ASTERISQUE, P141
[5]  
Bogomolov F. A., 2000, ASIAN J MATH, V4, P351, DOI 10.4310/AJM.2000.v4.n2.a6
[6]   CONSTRUCTING RATIONAL CURVES ON K3 SURFACES [J].
Bogomolov, Fedor ;
Hassett, Brendan ;
Tschinkel, Yuri .
DUKE MATHEMATICAL JOURNAL, 2011, 157 (03) :535-550
[7]  
Boissière S, 2007, ANN SCUOLA NORM-SCI, V6, P39
[8]  
BOURBAKI N., 1968, GROUPES ALGEBRES LIE
[9]  
CAPORASO L, 1995, PROG MATH, V129, P13
[10]  
Chen X, 1999, J ALGEBRAIC GEOM, V8, P245