Vanishing theorem for irreducible symmetric spaces of noncompact type

被引:0
作者
Liu, Xu Sheng [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
vanishing theorem; symmetric space; harmonic form; HARMONIC MAPS; MANIFOLDS; CURVATURE;
D O I
10.1007/s10114-010-6698-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M not equal SO (0)(2, 2)/SO(2) x SO(2). Let pi: E -> M be any vector bundle. Then any E-valued L (2) harmonic 1-form over M vanishes. In particular we get the vanishing theorem for harmonic maps from irreducible symmetric spaces of noncompact type.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 7 条
[1]  
[Anonymous], 2001, DIFFERENTIAL GEOMETR
[2]   THE DIFFERENTIAL FORM SPECTRUM OF MANIFOLDS OF POSITIVE CURVATURE [J].
ESCOBAR, JF ;
FREIRE, A .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (01) :1-41
[3]  
Jost J, 2000, J REINE ANGEW MATH, V525, P95
[4]  
SAMPSON JH, 1982, I NAZL ALTA MATH S M, pR26
[5]   HARMONIC MAPS OF BOUNDED SYMMETRICAL DOMAINS [J].
XIN, YL .
MATHEMATISCHE ANNALEN, 1995, 303 (03) :417-433
[6]   Harmonic maps from Kahler manifolds [J].
Xin, YL .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (02) :277-292
[7]   Curvature estimates for irreducible symmetric spaces [J].
Xusheng Liu .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (03) :287-302