The Native Conformation of the Human VDAC1 N Terminus

被引:48
|
作者
Schneider, Robert [1 ]
Etzkorn, Manuel [3 ]
Giller, Karin [1 ]
Daebel, Venita [1 ]
Eisfeld, Joerg [2 ]
Zweckstetter, Markus [1 ]
Griesinger, Christian [1 ]
Becker, Stefan [1 ]
Lange, Adam [1 ]
机构
[1] Max Planck Inst Biophys Chem, Dept NMR Based Struct Biol, D-37077 Gottingen, Germany
[2] Ionovat GmbH, D-49084 Osnabruck, Germany
[3] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
ion channels; membrane proteins; NMR spectroscopy; protein structures; DEPENDENT ANION CHANNEL; SOLID-STATE NMR; VOLTAGE; EXPRESSION; RESONANCE; PROTEINS; SEQUENCE;
D O I
10.1002/anie.200906241
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
(Figure Presented) Roll out the barrel: The conformation of the N-terminal domain of a functional human voltage-dependent anion channel (hVDACl) in lipid bilayers has been determined (see picture; overlay of NMR model (blue) and X-ray structure (red/ gray)). Solid-state NMR spectroscopy reveals that the N terminus assumes a well-defined, rigid structure and that its removal induces a conformational change in the hVDACl β-barrel. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.
引用
收藏
页码:1882 / 1885
页数:4
相关论文
共 50 条
  • [31] Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo
    Shoshan-Barmatz, Varda
    Keinan, Nurit
    Abu-Hamad, Salah
    Tyomkin, Dalia
    Aram, Lior
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 (6-7): : 1281 - 1291
  • [32] The 3D structures of VDAC represent a native conformation
    Hiller, Sebastian
    Abramson, Jeff
    Mannella, Carmen
    Wagner, Gerhard
    Zeth, Kornelius
    TRENDS IN BIOCHEMICAL SCIENCES, 2010, 35 (09) : 514 - 521
  • [33] VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana
    Xu, Jingya
    Zhang, Yuzhen
    Ren, Hongjia
    Yu, Runyi
    Yuan, Chen
    Hu, Yikai
    Xu, Rumeng
    Wang, Xuming
    Qin, Cheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [34] Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target
    Camara, Amadou K. S.
    Zhou, Yifan
    Wen, Po-Chao
    Tajkhorshid, Emad
    Kwok, Wai-Meng
    FRONTIERS IN PHYSIOLOGY, 2017, 8
  • [35] Visualizing VDAC1 in live cells using a tetracysteine tag
    Pilic, Johannes
    Oflaz, Furkan E.
    Gottschalk, Benjamin
    Erdogan, Yusuf C.
    Graier, Wolfgang F.
    Malli, Roland
    PLOS ONE, 2024, 19 (10):
  • [36] VDAC1 in the diseased myocardium and the effect of VDAC1-interacting compound on atrial fibrosis induced by hyperaldosteronism
    Klapper-Goldstein, Hadar
    Verma, Ankit
    Elyagon, Sigal
    Gillis, Roni
    Murninkas, Michael
    Pittala, Srinivas
    Paul, Avijit
    Shoshan-Barmatz, Varda
    Etzion, Yoram
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [37] WDR26/MIP2 interacts with VDAC1 and regulates VDAC1 expression levels in H9c2 cells
    Jiang, Lei
    Wang, Hao
    Chen, Guangbin
    Feng, Yansheng
    Zou, Jiang
    Liu, Meidong
    Liu, Ke
    Wang, Nian
    Zhang, Huali
    Wang, Kangkai
    Xiao, Xianzhong
    FREE RADICAL BIOLOGY AND MEDICINE, 2018, 117 : 58 - 65
  • [38] Characterization of the native and fibrillar conformation of the human Nα-acetyltransferase ARD1
    Sanchez-Puig, Nuria
    Fersht, Alan R.
    PROTEIN SCIENCE, 2006, 15 (08) : 1968 - 1976
  • [39] VDAC1 Topology in the Outer Mitochondrial Membrane: The Final Answer
    Guarino, Francesca
    Tomasello, Marianna Flora
    Magri, Andrea
    Impellizzeri, Agata
    Reina, Simona
    Messina, Angela
    De Pinto, Vito
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 539A - 540A
  • [40] Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase
    Baker, MA
    Ly, JD
    Lawen, A
    BIOFACTORS, 2004, 21 (1-4) : 215 - 221