A Multiplicity Result for a Non-local Critical Problem

被引:1
作者
Guo, Hui [1 ]
Wang, Tao [1 ]
机构
[1] Hunan Univ Sci & Technol, Coll Math & Comp Sci, Xiangtan 411201, Hunan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2019年 / 23卷 / 06期
关键词
multiple solutions; minimax methods; genus; critical growth; nonlocal operator; BREZIS-NIRENBERG RESULT; ELLIPTIC-EQUATIONS; CRITICAL GROWTH; DIFFUSION; GUIDE;
D O I
10.11650/tjm/181201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in the multiple solutions of the following fractional critical problem {(-Delta)(s) u = vertical bar u vertical bar(2)s*(-2)u + lambda u in Omega, u = 0 on R-N\Omega, where s is an element of (0, 1), N > 4s, 2(s)* = 2N/(N -2s), Omega is a smooth bounded domain in R-N and (-Delta)(s) is the fractional Laplace operator. Because the nonlocal property of fractional Laplacian makes the variational functional of the fractional critical problem different from the one of local operator -Delta. To the best of our knowledge, it is still unknown whether multiple solutions of the fractional critical problem exist for all lambda > 0. In this paper, we give a partial answer. Precisely, by introducing some new ideas and careful estimates, we prove that for any s is an element of (0, 1), the fractional critical problem has at least [(N + 1)/2] pairs of nontrivial solutions if 0 < A and has [(N +1 - l)/2] pairs if 0 < lambda not equal lambda(n) with multiplicity number 0 < l < min{n, N + 2}, via constraint method and Krasnoselskii genus. Here lambda(n) denotes the n-th eigenvalue of (-Delta)(s) with zero Dirichlet boundary data in Omega and [a] denotes the least positive integer k such that k >= a.
引用
收藏
页码:1389 / 1421
页数:33
相关论文
共 28 条
[1]  
[Anonymous], 2002, Adv. Differ. Equ
[2]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[3]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   The Influence of Fractional Diffusion in Fisher-KPP Equations [J].
Cabre, Xavier ;
Roquejoffre, Jean-Michel .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (03) :679-722
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[8]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[9]   Ground state and multiple solutions for a critical exponent problem [J].
Chen, Z. ;
Shioji, N. ;
Zou, W. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (03) :253-277
[10]  
Choi W., ARXIV14041132