Exponential stability criterion for chaos synchronization in modulated time-delayed systems

被引:8
|
作者
Ghosh, Dibakar [1 ]
Banerjee, Santo [2 ,3 ]
机构
[1] Dinabandhu Andrews Coll, Dept Math, Kolkata 700084, W Bengal, India
[2] Politecn Torino, Dept Math, I-10128 Turin, Italy
[3] Techfab Srl, Micro & Nano Technol Div, Chivasso, Italy
关键词
Chaos synchronization; Exponential stability; Delayed system; Modulated delay time; Krasovskii-Lyapunov theory; GENERALIZED SYNCHRONIZATION; ADAPTIVE SYNCHRONIZATION; PHASE SYNCHRONIZATION; TRANSITION; SCHEME;
D O I
10.1016/j.nonrwa.2010.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider two unidirectionally coupled time delayed systems with periodic delay time modulation. A new stability condition for synchronization is derived analytically with the help of the Krasovskii-Lyapunov approach for single and two time delays. The numerical calculations greatly support our analytical results. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3704 / 3710
页数:7
相关论文
共 50 条
  • [21] Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes
    Cai, Shuiming
    He, Qinbin
    Hao, Junjun
    Liu, Zengrong
    PHYSICS LETTERS A, 2010, 374 (25) : 2539 - 2550
  • [22] Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems
    Ghosh, Dibakar
    Chowdhury, A. Roy
    PHYSICS LETTERS A, 2010, 374 (34) : 3425 - 3436
  • [23] Fuzzy delayed output feedback synchronization for time-delayed chaotic systems
    Ahn, Choon Ki
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (01) : 16 - 24
  • [24] Nonlinear active observer-based generalized synchronization in time-delayed systems
    Dibakar Ghosh
    Nonlinear Dynamics, 2010, 59 : 289 - 296
  • [25] Generalized heterochronous synchronization in coupled time-delayed chaotic systems
    Zhang, Xiaoming
    Chen, Jufang
    Peng, Jianhua
    NONLINEAR DYNAMICS, 2014, 78 (04) : 2421 - 2428
  • [26] Generalized heterochronous synchronization in coupled time-delayed chaotic systems
    Xiaoming Zhang
    Jufang Chen
    Jianhua Peng
    Nonlinear Dynamics, 2014, 78 : 2421 - 2428
  • [27] Anticipatory, complete and lag synchronization of chaos and hyperchaos in a nonlinear delay-coupled time-delayed system
    Banerjee, Tanmoy
    Biswas, Debabrata
    Sarkar, B. C.
    NONLINEAR DYNAMICS, 2013, 72 (1-2) : 321 - 332
  • [28] Peculiarities of generalized synchronization in unidirectionally and mutually coupled time-delayed systems
    Moskalenko, Olga I.
    Koronovskii, Alexey A.
    Plotnikova, Anastasiya D.
    CHAOS SOLITONS & FRACTALS, 2021, 148
  • [29] Chaos Synchronization and Communication in Multiple Time-Delayed Coupling Semiconductor Lasers Driven by a Third Laser
    Jiang, Ning
    Pan, Wei
    Yan, Lianshan
    Luo, Bin
    Xiang, Shuiying
    Yang, Lei
    Zheng, Di
    Li, Nianqiang
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (05) : 1220 - 1227
  • [30] Complete and generalized synchronization of chaos and hyperchaos in a coupled first-order time-delayed system
    Banerjee, Tanmoy
    Biswas, Debabrata
    Sarkar, B. C.
    NONLINEAR DYNAMICS, 2013, 71 (1-2) : 279 - 290