Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws

被引:67
作者
Ma, HP [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China
关键词
conservation laws; Chebyshev-Legendre method; super spectral viscosity; convergence;
D O I
10.1137/S0036142995293912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order D-s = (root 1-x(2) partial derivative(x))(s) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev-Galerkin, Chebyshev collocation, or Legendre-Galerkin approximations to nonlinear conservation laws, which is proved by compensated compactness arguments.
引用
收藏
页码:893 / 908
页数:16
相关论文
共 22 条
[1]  
ABARBANEL S, 1986, NUMERICAL METHODS FL, V2, P129
[2]  
CANUTO C, 1988, SPCTRAL METHODS FLUI
[3]  
CHEN GQ, 1993, MATH COMPUT, V61, P629, DOI 10.1090/S0025-5718-1993-1185240-3
[4]   THE CHEBYSHEV LEGENDRE METHOD - IMPLEMENTING LEGENDRE METHODS ON CHEBYSHEV POINTS [J].
DON, WS ;
GOTTLIEB, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) :1519-1534
[5]   NUMERICAL STUDY OF PSEUDOSPECTRAL METHODS IN SHOCK-WAVE APPLICATIONS [J].
DON, WS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) :103-111
[6]  
FUNARO D, 1988, MATH COMPUT, V51, P599, DOI 10.1090/S0025-5718-1988-0958637-X
[7]  
FUNARO D, 1991, MATH COMPUT, V57, P585, DOI 10.1090/S0025-5718-1991-1094950-6
[8]   ON THE GIBBS PHENOMENON .4. RECOVERING EXPONENTIAL ACCURACY IN A SUBINTERVAL FROM A GEGENBAUER PARTIAL SUM OF A PIECEWISE ANALYTIC-FUNCTION [J].
GOTTLIEB, D ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1995, 64 (211) :1081-1095
[9]   ON THE GIBBS PHENOMENON .1. RECOVERING EXPONENTIAL ACCURACY FROM THE FOURIER PARTIAL SUM OF A NONPERIODIC ANALYTIC-FUNCTION [J].
GOTTLIEB, D ;
SHU, CW ;
SOLOMONOFF, A ;
VANDEVEN, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :81-98
[10]   ON THE GIBBS PHENOMENON .5. RECOVERING EXPONENTIAL ACCURACY FROM COLLOCATION POINT VALUES OF A PIECEWISE ANALYTIC-FUNCTION [J].
GOTTLIEB, D ;
SHU, CW .
NUMERISCHE MATHEMATIK, 1995, 71 (04) :511-526