Exogenous Salicylic Acid Improves Chilling Tolerance in Maize Seedlings by Improving Plant Growth and Physiological Characteristics

被引:17
|
作者
Zhang, Qian [1 ]
Li, Dongmei [1 ]
Wang, Qi [1 ]
Song, Xiangyu [1 ]
Wang, Yingbo [1 ]
Yang, Xilang [1 ]
Qin, Dongling [1 ]
Xie, Tenglong [1 ]
Yang, Deguang [1 ]
机构
[1] Northeast Agr Univ, Coll Agr, Harbin 150030, Peoples R China
来源
AGRONOMY-BASEL | 2021年 / 11卷 / 07期
基金
中国国家自然科学基金;
关键词
inbred line; plant growth; photosynthetic characteristics; reactive oxygen species (ROS) content; antioxidant enzyme; FREEZING TOLERANCE; COLD-ACCLIMATION; STRESS TOLERANCE; ABIOTIC STRESSES; SUPEROXIDE; L; PHOTOSYNTHESIS; TEMPERATURE; CULTIVARS; RESPONSES;
D O I
10.3390/agronomy11071341
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Maize (Zea mays L.) is a chilling-sensitive plant. Chilling stress in the early seedling stage seriously limits the growth, development, productivity and geographic distribution of maize. Salicylic acid (SA) is a plant growth regulator involved in the defenses against abiotic and biotic stresses as well as in plant development. However, the physiological mechanisms underlying the effects of foliar applied SA on different maize inbred lines under chilling stress are unclear. Two inbred lines, cold-sensitive cv. C546 and cold-tolerant cv. B125, were used to study the effects of SA on the growth and physiology of maize seedlings. The results showed that the application of SA at 50 mg/L on the leaves of maize seedlings under 4 degrees C decreased the relative electrolyte conductivity (REC) and the malondialdehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O-2(-)) content due to increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activity; SA also improved photosynthesis in the seedlings through increased chlorophyll content, enhanced Pn and Gs, and decreased Ci. SA application also increased the proline content and the relative water content (RWC) in the maize seedlings, thereby improving their osmotic adjustment capacity. The increase rate caused by SA of plant height and dry weight in C546 were 10.5% and 5.4% higher than that in B125 under 4 degrees C. In conclusion, SA promotes maize seedling growth and physiological characteristics, thus enhancing chilling resistance and the effect of SA on the chilling resistance of cold-sensitive cv. was stronger than that on cold-tolerant cv. at the low temperature.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize
    Muhammad Ahmed Waqas
    Imran Khan
    Muhammad Javaid Akhter
    Mehmood Ali Noor
    Umair Ashraf
    Environmental Science and Pollution Research, 2017, 24 : 11459 - 11471
  • [22] Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize
    Waqas, Muhammad Ahmed
    Khan, Imran
    Akhter, Muhammad Javaid
    Noor, Mehmood Ali
    Ashraf, Umair
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (12) : 11459 - 11471
  • [23] Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower
    Hussain, M.
    Malik, M. A.
    Farooq, M.
    Ashraf, M. Y.
    Cheema, M. A.
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2008, 194 (03) : 193 - 199
  • [24] Exogenous Melatonin Achieves Drought Tolerance by Improving Photosynthesis in Maize Seedlings Leaves
    Wang, Y. F.
    Guo, Y. Y.
    Zhao, C. F.
    Li, H. J.
    Zhang, R. H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2021, 68 (04) : 718 - 727
  • [25] Exogenous hydrogen sulfide improves chilling tolerance by regulating hydrogen peroxide production in cucumber seedlings
    Guoxiu Wu
    Shengli Li
    Yaoxin Dong
    Huangai Bi
    Xizhen Ai
    Horticulture, Environment, and Biotechnology, 2022, 63 : 651 - 663
  • [26] Exogenous hydrogen sulfide improves chilling tolerance by regulating hydrogen peroxide production in cucumber seedlings
    Wu, Guoxiu
    Li, Shengli
    Dong, Yaoxin
    Bi, Huangai
    Ai, Xizhen
    HORTICULTURE ENVIRONMENT AND BIOTECHNOLOGY, 2022, 63 (05) : 651 - 663
  • [27] Exogenous Melatonin Achieves Drought Tolerance by Improving Photosynthesis in Maize Seedlings Leaves
    Y. F. Wang
    Y. Y. Guo
    C. F. Zhao
    H. J. Li
    R. H. Zhang
    Russian Journal of Plant Physiology, 2021, 68 : 718 - 727
  • [28] Exogenous Salicylic Acid Improves Growth and Physiological Status of Two Pistacia Species Under Salinity Stress
    Parisa Gharibiyan
    Mahmoud Reza Roozban
    Majid Rahemi
    Kourosh Vahdati
    Erwerbs-Obstbau, 2023, 65 : 1441 - 1452
  • [29] Exogenous Salicylic Acid Improves Growth and Physiological Status of Two Pistacia Species Under Salinity Stress
    Gharibiyan, Parisa
    Roozban, Mahmoud Reza
    Rahemi, Majid
    Vahdati, Kourosh
    ERWERBS-OBSTBAU, 2023, 65 (05): : 1441 - 1452
  • [30] Exogenous application of 5-aminolevulinic acid improves low- temperature stress tolerance of maize seedlings
    Wang, Yi
    Li, Jing
    Gu, Wanrong
    Zhang, Qian
    Tian, Lixin
    Guo, Shi
    Wei, Shi
    CROP & PASTURE SCIENCE, 2018, 69 (06): : 587 - 593