Dynamic data-driven fault diagnosis of wind turbine systems

被引:0
|
作者
Ding, Yu [1 ]
Byon, Eunshin [1 ]
Park, Chiwoo [1 ]
Tang, Jiong [2 ]
Lu, Yi [2 ]
Wang, Xin [2 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
[2] Univ Connecticut, Storrs, CT 06269 USA
来源
COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS | 2007年 / 4487卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this multi-university collaborative research, we will develop a framework for the dynamic data-driven fault diagnosis of wind turbines which aims at making the wind energy a competitive alternative in the energy market. This new methodology is fundamentally different from the current practice whose performance is limited due to the non-dynamic and non-robust nature in the modeling approaches and in the data collection and processing strategies. The new methodology consists of robust data pre-processing modules, interrelated, multi-level models that describe different details of the system behaviors, and a dynamic strategy that allows for measurements to be adaptively taken according to specific physical conditions and the associated risk level. This paper summarizes the latest progresses in the research.
引用
收藏
页码:1197 / +
页数:2
相关论文
共 50 条
  • [1] DATA-DRIVEN TECHNIQUES FOR THE FAULT DIAGNOSIS OF A WIND TURBINE BENCHMARK
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2018, 28 (02) : 247 - 268
  • [2] Data-driven Sensor Fault Estimation for the Wind Turbine Systems
    Rahimilarki, Reihane
    Gao, Zhiwei
    Jin, Nanlin
    Binns, Richard
    Zhang, Aihua
    2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 1211 - 1216
  • [3] Fault Diagnosis of Turbine Based on Data-Driven
    Liao, Wei
    Li, Feng
    Han, Pu
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 499 - +
  • [4] Data-driven multiscale sparse representation for bearing fault diagnosis in wind turbine
    Guo, Yanjie
    Zhao, Zhibin
    Sun, Ruobin
    Chen, Xuefeng
    WIND ENERGY, 2019, 22 (04) : 587 - 604
  • [5] Data-driven fault identification of ageing wind turbine
    Liu, Yue
    Zhang, Long
    2022 UKACC 13TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2022, : 183 - 188
  • [6] Wind Turbine Data-Driven Intelligent Fault Detection
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 50 - 60
  • [7] DATA-DRIVEN MODEL-BASED FAULT DIAGNOSIS IN A WIND TURBINE WITH ACTUATOR FAULTS
    Badihi, Hamed
    Rad, Javad Soltani
    Zhang, Youmin
    Hong, Henry
    ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4B, 2015,
  • [8] Vibration data-driven fault detection for wind turbine gearbox
    Wang, Ji
    Wu, Jun
    Chen, Zuoyi
    Li, Guoqiang
    Wang, Yuanhang
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON UNDERWATER SYSTEM TECHNOLOGY: THEORY AND APPLICATIONS (USYS), 2018,
  • [9] Application of Data-Driven Fault Diagnosis Design Techniques to a Wind Turbine Test-Rig
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    INTELLIGENT COMPUTING, VOL 2, 2021, 284 : 23 - 38
  • [10] Data-driven fault detection and isolation scheme for a wind turbine benchmark
    de Bessa, Iury Valente
    Palhares, Reinaldo Martinez
    Silveira Vasconcelos D'Angelo, Marcos Flavio
    Chaves Filho, Joao Edgar
    RENEWABLE ENERGY, 2016, 87 : 634 - 645