Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment

被引:31
|
作者
Moussy, Alice [1 ,2 ]
Cosette, Jeremie [2 ]
Parmentier, Romuald [2 ]
da Silva, Cindy [1 ]
Corre, Guillaume [2 ]
Richard, Angelique [3 ]
Gandrillon, Olivier [3 ]
Stockholm, Daniel [1 ]
Paldi, Andras [1 ]
机构
[1] Univ Evry, INSERM, PSL Res Univ, Ecole Prat Hautes Etud,UMRS 951, Evry, France
[2] Genethon, Evry, France
[3] Univ Lyon, Ecole Normale Super Lyon, CNRS, Lab Biol & Modelisat Cellule, Lyon, France
关键词
STOCHASTIC GENE-EXPRESSION; LINEAGE COMMITMENT; STEM-CELLS; PROGENITOR CELLS; BLOOD STEM; DIFFERENTIATION; HETEROGENEITY; PU.1; EXPANSION; CHOICE;
D O I
10.1371/journal.pbio.2001867
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34 + cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned).
引用
收藏
页数:23
相关论文
共 11 条
  • [1] Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications
    Allard, Paige
    Papazotos, Fotini
    Potvin-Trottier, Laurent
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [2] A single-cell time-lapse of mouse prenatal development from gastrula to birth
    Qiu, Chengxiang
    Martin, Beth K.
    Welsh, Ian C.
    Daza, Riza M.
    Le, Truc-Mai
    Huang, Xingfan
    Nichols, Eva K.
    Taylor, Megan L.
    Fulton, Olivia
    O'Day, Diana R.
    Gomes, Anne Roshella
    Ilcisin, Saskia
    Srivatsan, Sanjay
    Deng, Xinxian
    Disteche, Christine M.
    Noble, William Stafford
    Hamazaki, Nobuhiko
    Moens, Cecilia B.
    Kimelman, David
    Cao, Junyue
    Schier, Alexander F.
    Spielmann, Malte
    Murray, Stephen A.
    Trapnell, Cole
    Shendure, Jay
    NATURE, 2024, 626 (8001) : 1084 - 1093
  • [3] Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation
    Buenrostro, Jason D.
    Corces, M. Ryan
    Lareau, Caleb A.
    Wu, Beijing
    Schep, Alicia N.
    Aryee, Martin J.
    Majeti, Ravindra
    Chang, Howard Y.
    Greenleaf, William J.
    CELL, 2018, 173 (06) : 1535 - +
  • [4] Single-Cell Quantification of Protein Degradation Rates by Time-Lapse Fluorescence Microscopy in Adherent Cell Culture
    Alber, Andrea Brigitta
    Suter, David Michael
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (132):
  • [5] DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology
    Pratt, Shawna L.
    Zath, Geoffrey K.
    Akiyama, Tatsuya
    Williamson, Kerry S.
    Franklin, Michael J.
    Chang, Connie B.
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [6] Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy
    Young, Jonathan W.
    Locke, James C. W.
    Altinok, Alphan
    Rosenfeld, Nitzan
    Bacarian, Tigran
    Swain, Peter S.
    Mjolsness, Eric
    Elowitz, Michael B.
    NATURE PROTOCOLS, 2012, 7 (01) : 80 - 88
  • [7] Modeling poliovirus replication dynamics from live time-lapse single-cell imaging data
    Teufel, Ashley, I
    Liu, Wu
    Draghi, Jeremy A.
    Cameron, Craig E.
    Wilke, Claus O.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment
    Kim, S.
    Lin, L.
    Brown, Gaj
    Hosaka, K.
    Scott, E. W.
    LEUKEMIA, 2017, 31 (07) : 1582 - 1592
  • [9] Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis
    Churko, Jared M.
    Garg, Priyanka
    Treutlein, Barbara
    Venkatasubramanian, Meenakshi
    Wu, Haodi
    Lee, Jaecheol
    Wessells, Quinton N.
    Chen, Shih-Yu
    Chen, Wen-Yi
    Chetal, Kashish
    Mantalas, Gary
    Neff, Norma
    Jabart, Eric
    Sharma, Arun
    Nolan, Garry P.
    Salomonis, Nathan
    Wu, Joseph C.
    NATURE COMMUNICATIONS, 2018, 9
  • [10] Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells - Tools for analyzing dynamics of cell cycle, migration, and lineage selection
    Piltti, Katja M.
    Cummings, Brian J.
    Carta, Krystal
    Manughian-Peter, Ayla
    Worne, Colleen L.
    Singh, Kulbir
    Ong, Danier
    Maksymyuk, Yuriy
    Khine, Michelle
    Anderson, Aileen J.
    METHODS, 2018, 133 : 81 - 90