Detection of Topics and Construction of Search Rules on Twitter

被引:0
作者
Martinez, Eduardo D. [1 ]
Fonseca, Juan P. [1 ]
Gonzalez, Victor M. [1 ]
Garduno, Guillermo [2 ]
Huipet, Hector H. [1 ]
机构
[1] ITAM, Mexico City 01080, DF, Mexico
[2] Sinnia, Mexico City 11560, DF, Mexico
来源
ADVANCES IN COMPUTING, CCC 2017 | 2017年 / 735卷
关键词
Twitter; Topic; Detection; Clustering;
D O I
10.1007/978-3-319-66562-7_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study proposes an improvement to the Insight Centre for Data Analytics algorithm, which identifies the most relevant topics in a corpus of tweets, and allows the construction of search rules for that topic or topics, in order to build a corpus of tweets for analysis. The improvement shows above 14% improvement in Purity and other metrics, and an execution time of 10% compared to Latent Dirichlet Allocation (LDA).
引用
收藏
页码:171 / 183
页数:13
相关论文
共 24 条
[1]  
Adarsh M., 2015, INT J COMPUTER APPL, V128, P34, DOI [10.5120/ijca2015906553, DOI 10.5120/IJCA2015906553]
[2]  
Agarwal V., 2015, INT J COMPUT APPL, V132, P13
[3]  
Anjaria M., 2014, P 6 INT C COMM SYST, P1
[4]  
[Anonymous], [No title captured]
[5]  
[Anonymous], 2017, TASS TALLER ANALISIS
[6]  
[Anonymous], 2008, Introduction to information retrieval
[7]  
[Anonymous], 2011, MODERN HIERARCHICAL
[8]  
[Anonymous], INT J COMPUT APPL
[9]  
[Anonymous], TWITTER IN NUMBERS
[10]  
[Anonymous], 2001, Snowball: a language for stemming algorithms