Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun-sky photometer measurements

被引:14
作者
Antonio Benavent-Oltra, Jose [1 ,2 ,3 ]
Andres Casquero-Vera, Juan [2 ,3 ]
Roman, Roberto [4 ]
Lyamani, Hassan [2 ,3 ]
Perez-Ramirez, Daniel [2 ,3 ]
Jose Granados-Munoz, Maria [2 ,3 ]
Herrera, Milagros [5 ]
Cazorla, Alberto [2 ,3 ]
Titos, Gloria [2 ,3 ]
Ortiz-Amezcua, Pablo [2 ,3 ,6 ]
Esteban Bedoya-Velasquez, Andres [3 ,7 ]
de Arruda Moreira, Gregori [3 ,8 ]
Perez, Noemi [9 ]
Alastuey, Andres [9 ]
Dubovik, Oleg [5 ]
Luis Guerrero-Rascado, Juan [2 ,3 ]
Jose Olmo-Reyes, Francisco [2 ,3 ]
Alados-Arboledas, Lucas [2 ,3 ]
机构
[1] Univ Genoa, Dept Civil Chem & Environm Engn, Genoa, Italy
[2] Univ Granada, Dept Appl Phys, Granada, Spain
[3] IISTA CEAMA, Andalusian Inst Earth Syst Res, Granada, Spain
[4] Univ Valladolid, Grp Atmospher Opt GOA UVa, Valladolid, Spain
[5] Univ Lille, UMR8518, CNRS, Lab Opt Atmospher LOA, Villeneuve Dascq, France
[6] Univ Warsaw, Fac Phys, Inst Geophys, IGFUW, Warsaw, Poland
[7] Off Natl Etud & Rech Aerosp, French Aeorospace Lab, Toulouse, France
[8] Fed Inst Sao Paulo IFSP, Campus Registro, Sao Paulo, Brazil
[9] CSIC, Inst Environm Assessment & Water Res IDAEA, Barcelona, Spain
关键词
OPTICAL-PROPERTIES; BACKSCATTER LIDAR; MINERAL DUST; INVERSION; ALGORITHM; NETWORK; AERONET; REGULARIZATION; EXTINCTION; EARLINET;
D O I
10.5194/acp-21-9269-2021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Sierra Nevada Lidar aerOsol Profiling Experiment I and II (SLOPE I and II) campaigns were intended to determine the vertical structure of aerosols by remote sensing instruments and test the various retrieval schemes for obtaining aerosol microphysical and optical properties with in situ measurements. The SLOPE I and II campaigns were developed during the summers of 2016 and 2017, respectively, combining active and passive remote sensing with in situ measurements at stations belonging to the AGORA observatory (Andalusian Global ObseRvatory of the Atmosphere) in the Granada area (Spain). In this work, we use the in situ measurements of these campaigns to evaluate aerosol properties retrieved by the GRASP code (Generalized Retrieval of Atmosphere and Surface Properties) combining lidar and sun-sky photometer measurements. We show an overview of aerosol properties retrieved by GRASP during the SLOPE I and II campaigns. In addition, we evaluate the GRASP retrievals of total aerosol volume concentration (discerning between fine and coarse modes), extinction and scattering coefficients, and for the first time we present an evaluation of the absorption coefficient. The statistical analysis of aerosol optical and microphysical properties, both column-integrated and vertically resolved, from May to July 2016 and 2017 shows a large variability in aerosol load and types. The results show a strong predominance of desert dust particles due to North African intrusions. The vertically resolved analysis denotes a decay of the atmospheric aerosols with an altitude up to 5 km a.s.l. Finally, desert dust and biomass burning events were chosen to show the high potential of GRASP to retrieve vertical profiles of aerosol properties (e.g. absorption coefficient and single scattering albedo) for different aerosol types. The aerosol properties retrieved by GRASP show good agreement with simultaneous in situ measurements (nephelometer, aethalometer, scanning mobility particle sizer, and aerodynamic particle sizer) performed at the Sierra Nevada Station (SNS) in Granada. In general, GRASP overestimates the in situ data at the SNS with a mean difference lower than 6 mu m(3) cm(-3) for volume concentration, and 11 and 2 Mm(-1)for the scattering and absorption coefficients. On the other hand, the comparison of GRASP with airborne measurements also shows an overestimation with mean absolute differences of 14 +/- 10 and 1.2 +/- 1.2 Mm(-1) for the scattering and absorption coefficients, showing a better agreement for the absorption (scattering) coefficient with higher (lower) aerosol optical depth. The potential of GRASP shown in this study will contribute to enhancing the representativeness of the aerosol vertical distribution and provide information for satellite and global model evaluation.
引用
收藏
页码:9269 / 9287
页数:19
相关论文
共 44 条
[11]   Analyses of aerosol properties in Hefei based on polarization measurements of a sun photometer [J].
Wang, Jiacheng ;
Yang, Shizhi ;
Zhao, Qiang ;
Cui, Shengcheng .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2012, 33 (01) :69-80
[12]   Retrieval of Aged Biomass-Burning Aerosol Properties by Using GRASP Code in Synergy with Polarized Micro-Pulse Lidar and Sun/Sky Photometer [J].
Lopez-Cayuela, Maria-Angeles ;
Herrera, Milagros E. ;
Cordoba-Jabonero, Carmen ;
Perez-Ramirez, Daniel ;
Violeta Carvajal-Perez, Clara ;
Dubovik, Oleg ;
Luis Guerrero-Rascado, Juan .
REMOTE SENSING, 2022, 14 (15)
[13]   Depolarization ratios retrieved by AERONET sun-sky radiometer data and comparison to depolarization ratios measured with lidar [J].
Noh, Youngmin ;
Muller, Detlef ;
Lee, Kyunghwa ;
Kim, Kwanchul ;
Lee, Kwonho ;
Shimizu, Atsushi ;
Kim, Sang-Woo ;
Sano, Itaru ;
Park, Chan Bong .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (10) :6271-6290
[14]   Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2 [J].
Toledano, C. ;
Wiegner, M. ;
Gross, S. ;
Freudenthaler, V. ;
Gasteiger, J. ;
Mueller, D. ;
Mueller, T. ;
Schladitz, A. ;
Weinzierl, B. ;
Torres, B. ;
O'Neill, N. T. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2011, 63 (04) :635-648
[15]   Aerosol measurements with a shipborne Sun-sky-lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean [J].
Yin, Zhenping ;
Ansmann, Albert ;
Baars, Holger ;
Seifert, Patric ;
Engelmann, Ronny ;
Radenz, Martin ;
Jimenez, Cristofer ;
Herzog, Alina ;
Ohneiser, Kevin ;
Hanbuch, Karsten ;
Blarel, Luc ;
Goloub, Philippe ;
Dubois, Gael ;
Victori, Stephane ;
Maupin, Fabrice .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (10) :5685-5698
[16]   Comparison of diurnal aerosol products retrieved from combinations of micro-pulse lidar and sun photometer observations over the KAUST observation site [J].
Lopatin, Anton ;
Dubovik, Oleg ;
Stenchikov, Georgiy ;
Welton, Ellsworth J. ;
Shevchenko, Illia ;
Fuertes, David ;
Herreras-Giralda, Marcos ;
Lapyonok, Tatsiana ;
Smirnov, Alexander .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (14) :4445-4470
[17]   Aerosol properties over an urban site in central East China derived from ground sun-photometer measurements [J].
Liu Qi ;
Ding WeiDong ;
Xie Lei ;
Zhang JinQiang ;
Zhu Jun ;
Xia XiangAo ;
Liu DongYang ;
Yuan RenMin ;
Fu YunFei .
SCIENCE CHINA-EARTH SCIENCES, 2017, 60 (02) :297-314
[18]   Evaluation of the Accuracy of the Aerosol Optical and Microphysical Retrievals by the GRASP Algorithm from Combined Measurements of a Polarized Sun-Sky-Lunar Photometer and a Three-Wavelength Elastic Lidar [J].
Oliveira, Daniel Camilo Fortunato dos Santos ;
Sicard, Michael ;
Rodriguez-Gomez, Alejandro ;
Comeron, Adolfo ;
Munoz-Porcar, Constantino ;
Gil-Diaz, Cristina ;
Lolli, Simone ;
Dubovik, Oleg ;
Lopatin, Anton ;
Herrera, Milagros Estefania ;
Herreras-Giralda, Marcos .
REMOTE SENSING, 2023, 15 (20)
[19]   Trends and Variability of Aerosol Vertical Distribution and Properties Using Micro-LIDAR and Sun-photometer Measurements [J].
Mortier, Augustin ;
Goloub, Philippe ;
Podvin, Thierry ;
Tanre, Didier ;
Deroo, Christine ;
Chiapello, Isabelle ;
Diallo, Aboubakry ;
NDiaye, Thierno .
RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012), 2013, 1531 :508-511
[20]   Estimation of aerosol water and chemical composition from AERONET Sun-sky radiometer measurements at Cabauw, the Netherlands [J].
van Beelen, A. J. ;
Roelofs, G. J. H. ;
Hasekamp, O. P. ;
Henzing, J. S. ;
Rockmann, T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (12) :5969-5987