Rotating Machinery Fault Diagnosis Based on Improved Multiscale Amplitude-Aware Permutation Entropy and Multiclass Relevance Vector Machine

被引:32
|
作者
Chen, Yinsheng [1 ]
Zhang, Tinghao [2 ]
Zhao, Wenjie [1 ]
Luo, Zhongming [1 ]
Lin, Haijun [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Measurement & Commun Engn, Harbin 150080, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150080, Heilongjiang, Peoples R China
关键词
rotating machinery; fault diagnosis; fault severity; intrinsic time-scale decomposition; amplitude-aware permutation entropy; multiclass relevance vector machine; LOCAL MEAN DECOMPOSITION; ALGORITHM;
D O I
10.3390/s19204542
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The health state of rotating machinery directly affects the overall performance of the mechanical system. The monitoring of the operation condition is very important to reduce the downtime and improve the production efficiency. This paper presents a novel rotating machinery fault diagnosis method based on the improved multiscale amplitude-aware permutation entropy (IMAAPE) and the multiclass relevance vector machine (mRVM) to provide the necessary information for maintenance decisions. Once the fault occurs, the vibration amplitude and frequency of rotating machinery obviously changes and therefore, the vibration signal contains a considerable amount of fault information. In order to effectively extract the fault features from the vibration signals, the intrinsic time-scale decomposition (ITD) was used to highlight the fault characteristics of the vibration signal by extracting the optimum proper rotation (PR) component. Subsequently, the IMAAPE was utilized to realize the fault feature extraction from the PR component. In the IMAAPE algorithm, the coarse-graining procedures in the multi-scale analysis were improved and the stability of fault feature extraction was promoted. The coarse-grained time series of vibration signals at different time scales were firstly obtained, and the sensitivity of the amplitude-aware permutation entropy (AAPE) to signal amplitude and frequency was adopted to realize the fault feature extraction of coarse-grained time series. The multi-classifier based on the mRVM was established by the fault feature set to identify the fault type and analyze the fault severity of rotating machinery. In order to demonstrate the effectiveness and feasibility of the proposed method, the experimental datasets of the rolling bearing and gearbox were used to verify the proposed fault diagnosis method respectively. The experimental results show that the proposed method can be applied to the fault type identification and the fault severity analysis of rotating machinery with high accuracy.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings
    Li, Zhe
    Cui, Yahui
    Li, Longlong
    Chen, Runlin
    Dong, Liang
    Du, Juan
    ENTROPY, 2022, 24 (03)
  • [12] Early fault diagnosis of rotating machinery based on composite zoom permutation entropy
    Ma, Chenyang
    Li, Yongbo
    Wang, Xianzhi
    Cai, Zhiqiang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [13] A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree
    Li, Yongbo
    Xu, Minqiang
    Wei, Yu
    Huang, Wenhu
    MEASUREMENT, 2016, 77 : 80 - 94
  • [14] Intelligent Fault Diagnosis for Rotating Mechanical Systems: An Improved Multiscale Fuzzy Entropy and Support Vector Machine Algorithm
    Pan, Yuxin
    Chen, Yinsheng
    Fei, Xihong
    Wang, Kang
    Fang, Tian
    Wang, Jing
    ALGORITHMS, 2024, 17 (12)
  • [15] Bearing Early Fault Diagnosis Based on an Improved Multiscale Permutation Entropy and SVM
    Jiang, Qunyan
    Dai, Juying
    Shao, Faming
    Song, Shengli
    Meng, Fanjie
    SHOCK AND VIBRATION, 2022, 2022
  • [16] Semi-Supervised Multiscale Permutation Entropy-Enhanced Contrastive Learning for Fault Diagnosis of Rotating Machinery
    Zhou, Yuqing
    Wang, Hongche
    Wang, Gonghai
    Kumar, Anil
    Sun, Weifang
    Xiang, Jiawei
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [17] Research on Fault Diagnosis Method Using Improved MultiClass Classification Algorithm and Relevance Vector Machine
    Wu, Kun
    Kang, Jianshe
    Chi, Kuo
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2015, 10 (03) : 1 - 16
  • [18] Fault diagnosis of rotating machinery based on an improved support vector machines model
    Cao, Chongfeng
    Yang, Shixi
    Zhou, Xiaofeng
    Yang, Jiangxin
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2009, 29 (03): : 270 - 273
  • [19] A new rotating machinery fault diagnosis method for different speeds based on improved multivariate multiscale fuzzy distribution entropy
    Ma, Yanli
    Cheng, Junsheng
    Wang, Ping
    Wang, Jian
    Yang, Yu
    NONLINEAR DYNAMICS, 2023, 111 (18) : 16895 - 16919
  • [20] A new rotating machinery fault diagnosis method for different speeds based on improved multivariate multiscale fuzzy distribution entropy
    Yanli Ma
    Junsheng Cheng
    Ping Wang
    Jian Wang
    Yu Yang
    Nonlinear Dynamics, 2023, 111 : 16895 - 16919