Conservation laws and Exact Solutions of Phi-Four (Phi-4) Equation via the (G′/G, 1/G)-Expansion Method

被引:26
作者
Akbulut, Arzu [1 ]
Kaplan, Melike [1 ]
Tascan, Filiz [1 ]
机构
[1] Eskisehir Osmangazi Univ, Art Sci Fac, Dept Math Comp, Eskisehir, Turkey
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 05期
关键词
Conservation Law; Exact Solution; (G'/G; 1/G)-Expansion Method; Phi-4; Equation; TRAVELING-WAVE SOLUTIONS; MATHEMATICAL PHYSICS; SYMMETRIES;
D O I
10.1515/zna-2016-0010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we constructed formal Lagrangian of Phi-4 equation, and then via this formal Lagrangian, we found adjoint equation. We investigated if the Lie point symmetries of the equation satisfy invariance condition or not. Then we used conservation theorem to find conservation laws of Phi-4 equation. Finally, the exact solutions of the equation were obtained through the (G'/G, 1/G)-expansion method.
引用
收藏
页码:439 / 446
页数:8
相关论文
共 42 条
[1]  
Ablowitz M J., 1990, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
[2]   Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method [J].
Akter, Jesmin ;
Akbar, M. Ali .
RESULTS IN PHYSICS, 2015, 5 :125-130
[3]   Direct construction method for conservation laws of partial differential equations - Part II: General treatment [J].
Anco, SC ;
Bluman, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :567-585
[4]  
[Anonymous], 2015, J EGYPT MATH SOC
[5]  
Bekir A., 2015, INT J NONLINEAR SCI, V19, P3159
[6]   A novel modified simple equation method and its application to some nonlinear evolution equation systems [J].
Bekir, Ahmet ;
Kaplan, Melike ;
Guner, Ozkan .
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 :30-36
[7]   Explicit solutions of nonlinear wave equation systems [J].
Bekir, Ahmet ;
Ayhan, Burcu ;
Ozer, M. Naci .
CHINESE PHYSICS B, 2013, 22 (01)
[8]   Solitons and conservation laws of Klein-Gordon equation with power law and log law nonlinearities [J].
Biswas, Anjan ;
Kara, Abdul H. ;
Bokhari, Ashfaque H. ;
Zaman, F. D. .
NONLINEAR DYNAMICS, 2013, 73 (04) :2191-2196
[9]  
Bluman George W, 2013, SYMMETRIES DIFFERENT, V81
[10]  
Compere G., 2007, THESIS U LIBRE BRUXE