Scalable Synthesis of LiF-rich 3D Architected Li Metal Anode via Direct Lithium-Fluoropolymer Pyrolysis to Enable Fast Li Cycling

被引:24
作者
Shang, Yuanyuan [1 ]
Chu, Tiankuo [1 ]
Shi, Baohui [1 ]
Fu, Kun [1 ,2 ]
机构
[1] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[2] Univ Delaware, Ctr Composite Mat CCM, Newark, DE 19716 USA
关键词
3D architected material; fast charging; Li‐ dendrite free; LiF‐ rich Li metal; pyrolysis of fluoropolymer; HIGH-ENERGY; DENDRITE GROWTH; INTERFACES; BATTERIES; LIQUID; ELECTROLYTES; CHALLENGES;
D O I
10.1002/eem2.12099
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium metal anode holds an important position in fast-charging batteries. But lithium dendrite issues tend to exacerbate at high currents. LiF can be considered as an effective way to improve the Li metal surface electrochemical stability to achieve high power and high energy. However, most of reported work are relying on in situ formation of a 2D LiF on Li metal in liquid electrolyte, which limits the scalability and plated Li quantity. Here, we address this challenge and report a scalable synthesis of LiF-rich 3D architected Li metal anode via a direct pyrolysis of molten lithium and fluoropolymer to enable fast Li charging with high current density (20 mA cm(-2)) and high areal capacity (20 mAh cm(-2)). The 3D structure is synthesized by the pyrolysis of fluoropolymer with Li metal and results show high similarity to the pristine electrolyte-derived solid-electrolyte-interphase (SEI). This concept using pyrolysis of fluoropolymer with Li-containing active materials could be also extended to modify Li metal oxide cathode (e.g., LiNi0.5Mn1.5O4) for mixed conductive interphase and engineer Li solid ion conductors (e.g., Li garnet-type oxides) for interface stabilization and framework design.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 29 条
[1]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[2]   Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations [J].
Aryanfar, Asghar ;
Brooks, Daniel ;
Merinov, Boris V. ;
Goddard, William A., III ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (10) :1721-1726
[3]   Bridging the academic and industrial metrics for next-generation practical batteries [J].
Cao, Yuliang ;
Li, Matthew ;
Lu, Jun ;
Liu, Jun ;
Amine, Khalil .
NATURE NANOTECHNOLOGY, 2019, 14 (03) :200-207
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities [J].
Choudhury, Snehashis ;
Archer, Lynden A. .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (02)
[6]  
Guo Y., 2019, MODIFIED 3D CURRENT
[7]  
Howell D., 2017, ENABLING FAST CHARGI
[8]   Lithium dendrite growth mechanisms in liquid electrolytes [J].
Jana, Aniruddha ;
Garcia, R. Edwin .
NANO ENERGY, 2017, 41 :552-565
[9]   Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition [J].
Kozen, Alexander C. ;
Lin, Chuan-Fu ;
Pearse, Alexander J. ;
Schroeder, Marshall A. ;
Han, Xiaogang ;
Hu, Liangbing ;
Lee, Sang-Bok ;
Rubloff, Gary W. ;
Noked, Malachi .
ACS NANO, 2015, 9 (06) :5884-5892
[10]   Atomic structure of sensitive battery materials and Interfaces revealed by cryo-electron microscopy [J].
Li, Yuzhang ;
Li, Yanbin ;
Pei, Allen ;
Yan, Kai ;
Sun, Yongming ;
Wu, Chun-Lan ;
Joubert, Lydia-Marie ;
Chin, Richard ;
Koh, Ai Leen ;
Yu, Yi ;
Perrino, John ;
Butz, Benjamin ;
Chu, Steven ;
Cui, Yi .
SCIENCE, 2017, 358 (6362) :506-510