Robust kernel principal component analysis with optimal mean

被引:21
作者
Li, Pei
Zhang, Wenlin
Lu, Chengjun
Zhang, Rui [1 ]
Li, Xuelong
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
关键词
Kernel principal component analysis; Robust principal component analysis; Optimal mean;
D O I
10.1016/j.neunet.2022.05.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The kernel principal component analysis (KPCA) serves as an efficient approach for dimensionality reduction. However, the KPCA method is sensitive to the outliers since the large square errors tend to dominate the loss of KPCA. To strengthen the robustness of KPCA method, we propose a novel robust kernel principal component analysis with optimal mean (RKPCA-OM) method. RKPCA-OM not only possesses stronger robustness for outliers than the conventional KPCA method, but also can eliminate the optimal mean automatically. What is more, the theoretical proof proves the convergence of the algorithm to guarantee that the optimal subspaces and means are obtained. Lastly, exhaustive experimental results verify the superiority of our method. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 22 条
  • [1] [Anonymous], 2004, KERNEL METHODS PATTE
  • [2] [Anonymous], 2003, LECT NOTES COMPUTER
  • [3] [Anonymous], 2002, PRINCIPAL COMPONENT
  • [4] Bach Francis R, 2005, P 22 INT C MACH LEAR, P33, DOI DOI 10.1145/1102351.1102356
  • [5] Burrus C. S., 2009, COMMUN PUR APPL MATH, V44, P1, DOI DOI 10.1007/978-0-387-09608-7_4
  • [6] Incremental kernel principal component analysis
    Chin, Tat-Jun
    Suter, David
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (06) : 1662 - 1674
  • [7] Cox T., 1994, Multidimensional Scaling
  • [8] Iteratively Reweighted Least Squares Minimization for Sparse Recovery
    Daubechies, Ingrid
    Devore, Ronald
    Fornasier, Massimo
    Guentuerk, C. Sinan
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (01) : 1 - 38
  • [9] Robust kernel principal component analysis and classification
    Debruyne, Michiel
    Verdonck, Tim
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 151 - 167
  • [10] Error bounds for suboptimal solutions to kernel principal component analysis
    Gnecco, Giorgio
    Sanguineti, Marcello
    [J]. OPTIMIZATION LETTERS, 2010, 4 (02) : 197 - 210