Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.)

被引:37
作者
Zhang, Jiyu [1 ]
Duan, Zhen [1 ]
Zhang, Daiyu [1 ]
Zhang, Jianquan [1 ]
Di, Hongyan [1 ]
Wu, Fan [1 ]
Wang, Yanrong [1 ]
机构
[1] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Coll Pastoral Agr Sci & Technol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Alfalfa; Bar; CsLEA gene; Drought and salt stress; Transformation; LEA GENE; SALINITY STRESS; INDUCED EXPRESSION; WATER-STRESS; PROTEIN; RICE; EMBRYOGENESIS; TOBACCO; IDENTIFICATION; PROLINE;
D O I
10.1016/j.bbrc.2016.02.067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na+ content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that over expression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [31] Insights into the Impact of Trans-Zeatin Overproduction-Engineered Sinorhizobium meliloti on Alfalfa (Medicago sativa L.) Tolerance to Drought Stress
    Yu, Wenzhe
    Luo, Li
    Qi, Xiangyu
    Cao, Yuman
    An, Jie
    Xie, Zhiguo
    Hu, Tianming
    Yang, Peizhi
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (15) : 8650 - 8663
  • [32] Screening of alfalfa (Medicago sativa L.) cultivars for drought tolerance at germination stage and seedling growth
    Khodarahmpour, Zahra
    RESEARCH ON CROPS, 2013, 14 (02) : 571 - 575
  • [33] Effect of salt stress on Growth and Ion accumulation of alfalfa (Medicago sativa L.) cultivars
    Ashrafi, Ensiye
    Razmjoo, Jamshid
    Zahedi, Morteza
    JOURNAL OF PLANT NUTRITION, 2018, 41 (07) : 818 - 831
  • [34] An alfalfa (Medicago sativa L.) ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis
    Tingting Chen
    Qingchuan Yang
    Xinquan Zhang
    Wang Ding
    Margaret Gruber
    Plant Cell Reports, 2012, 31 : 1737 - 1746
  • [35] Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress
    Quan, Wenli
    Liu, Xun
    Wang, Haiqing
    Chan, Zhulong
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 126 (01) : 105 - 115
  • [36] Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress
    Wenli Quan
    Xun Liu
    Haiqing Wang
    Zhulong Chan
    Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 126 : 105 - 115
  • [37] Mechanistic Basis of Silicon Mediated Cold Stress Tolerance in Alfalfa (Medicago sativa L.)
    Md Atikur Rahman
    Yowook Song
    Md. Mahadi Hasan
    Mohammad Shah Jahan
    Manzer H. Siddiqui
    Hyung Soo Park
    Sang-Hoon Lee
    Deepti Singh
    Francisco J. Corpas
    Ahmad Humayan Kabir
    Ki-Won Lee
    Silicon, 2024, 16 : 1057 - 1069
  • [38] Melatonin and calcium synergistically improve salt tolerance in alfalfa (Medicago sativa. L)
    Guo, Shuaiqi
    Wang, Xiaotong
    Li, Xiaohong
    Ma, Yonglong
    Yang, Jinhui
    Fu, Bingzhe
    Li, Shuxia
    INDUSTRIAL CROPS AND PRODUCTS, 2025, 224
  • [39] EVALUATION OF DROUGHT TOLERANCE IN ALFALFA (Medicago sativa) GENOTYPES IN THE CONDITIONS OF OSMOTIC STRESS
    Tyshchenko, Olena
    Tyshchenko, Andrii
    Piliarska, Olena
    Kuts, Halyna
    Lykhovyd, Pavlo
    AGROLIFE SCIENTIFIC JOURNAL, 2020, 9 (02): : 353 - 358
  • [40] Mechanistic Basis of Silicon Mediated Cold Stress Tolerance in Alfalfa (Medicago sativa L.)
    Rahman, Md Atikur
    Song, Yowook
    Hasan, Md. Mahadi
    Jahan, Mohammad Shah
    Siddiqui, Manzer H.
    Park, Hyung Soo
    Lee, Sang-Hoon
    Singh, Deepti
    Corpas, Francisco J.
    Kabir, Ahmad Humayan
    Lee, Ki-Won
    SILICON, 2024, 16 (03) : 1057 - 1069