Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.)

被引:37
|
作者
Zhang, Jiyu [1 ]
Duan, Zhen [1 ]
Zhang, Daiyu [1 ]
Zhang, Jianquan [1 ]
Di, Hongyan [1 ]
Wu, Fan [1 ]
Wang, Yanrong [1 ]
机构
[1] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Coll Pastoral Agr Sci & Technol, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Alfalfa; Bar; CsLEA gene; Drought and salt stress; Transformation; LEA GENE; SALINITY STRESS; INDUCED EXPRESSION; WATER-STRESS; PROTEIN; RICE; EMBRYOGENESIS; TOBACCO; IDENTIFICATION; PROLINE;
D O I
10.1016/j.bbrc.2016.02.067
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na+ content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that over expression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [21] DROUGHT-INDUCED UNKNOWN PROTEIN 1 positively modulates drought tolerance in cultivated alfalfa (Medicago sativa L.)
    Luo, Dong
    Zhang, Xi
    Liu, Jie
    Wu, Yuguo
    Zhou, Qiang
    Fang, Longfa
    Liu, Zhipeng
    CROP JOURNAL, 2023, 11 (01): : 57 - 70
  • [22] Characterization of alfalfa (Medicago sativa L) following in vitro selection for salt tolerance
    Safarnejad, A
    Collin, HA
    Bruce, KD
    McNeilly, T
    EUPHYTICA, 1996, 92 (1-2) : 55 - 61
  • [23] MsSPL12 is a positive regulator in alfalfa (Medicago sativa L.) salt tolerance
    Shiwen Lin
    Jie Yang
    Yanrong Liu
    Wanjun Zhang
    Plant Cell Reports, 2024, 43
  • [24] Overexpression of OsRLCK241 confers enhanced salt and drought tolerance in transgenic rice (Oryza sativa L.)
    Zhang, Hui
    Zhai, Niu
    Ma, Xiang
    Zhou, Huina
    Cui, Yanchun
    Wang, Chen
    Xu, Guoyun
    GENE, 2021, 768
  • [25] Coexpression of ScNHX1 and ScVP in Transgenic Hybrids Improves Salt and Saline-Alkali Tolerance in Alfalfa (Medicago sativa L.)
    Liu, Liang
    Fan, Xiu-Duo
    Wang, Fa-Wei
    Wang, Nan
    Dong, Yuan-Yuan
    Liu, Xiu-Ming
    Yang, Jing
    Wang, Yan-Fang
    Li, Hai-Yan
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (01) : 1 - 8
  • [26] Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.)
    Zhang, L. Q.
    Niu, Y. D.
    Huridu, H.
    Hao, J. F.
    Qi, Z.
    Hasi, A.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (03) : 5350 - 5360
  • [27] Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation
    Zhang, Wan-Jun
    Wang, Tao
    PLANT SCIENCE, 2015, 234 : 110 - 118
  • [28] Melatonin improves salt tolerance of in vitro root culture of alfalfa (Medicago sativa L.)
    Jalili, Shabnam
    Ehsanpour, Ali Akbar
    Morteza Javadirad, Seyed
    BIOLOGIA, 2023, 78 (04) : 961 - 970
  • [29] Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa)
    Bai, Xi
    Liu, Jing
    Tang, Lili
    Cai, Hua
    Chen, Ming
    Ji, Wei
    Liu, Ying
    Zhu, Yanming
    FUNCTIONAL PLANT BIOLOGY, 2013, 40 (10) : 1048 - 1056
  • [30] Intraspecific Variation for Leaf Physiological and Root Morphological Adaptation to Drought Stress in Alfalfa (Medicago sativa L.)
    Prince, Silvas
    Anower, Md Rokebul
    Motes, Christy M.
    Hernandez, Timothy D.
    Liao, Fuqi
    Putman, Laura
    Mattson, Rob
    Seethepalli, Anand
    Shah, Kushendra
    Komp, Michael
    Mehta, Perdeep
    York, Larry M.
    Young, Carolyn
    Monteros, Maria J.
    FRONTIERS IN PLANT SCIENCE, 2022, 13