Raman spectroscopy is employed to obtain information that cannot be obtained using other technologies, using inelastic scattering. The development of laser technology enables Raman spectroscopy to overcome its limits and succeed in various fields. For example, compared with other analysis methods that use light, it does not require a sample preparation or long measuring time-thus, it is a great breakthrough for in situ process applications. Also, it is difficult to analyze functional groups that are combined and the influence on the reaction is analyzed during the reaction in chemical solutions. Therefore, Raman spectroscopy provides an analytic method and assists in every step to increase the accuracy of the chemical process. Lately, developed surface-enhanced Raman spectroscopy (SERS) are used in precise analyzing methods. High-resolution SERS needs a specific substrate to satisfy each purpose. Raman spectroscopy is now advanced to be more a powerful analytic tool, combined with surface-enhancing technology, atomic force microscopy (AFM), and other technology.