Coplanar Doppler Lidar Retrieval of Rotors from T-REX

被引:47
作者
Hill, Michael [1 ]
Calhoun, Ron [1 ]
Fernando, H. J. S. [1 ]
Wieser, Andreas [2 ]
Doernbrack, Andreas [3 ]
Weissmann, Martin [3 ]
Mayr, Georg [4 ]
Newsom, Robert [5 ]
机构
[1] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA
[2] Forschungszentrum Karlsruhe, Inst Meteorol & Klimaforsch, Karlsruhe, Germany
[3] Deutsch Zentrum Luft & Raumfahrt, Inst Atmospher Phys, Oberpfaffenhofen, Germany
[4] Univ Innsbruck, Inst Meteorol & Geophys, A-6020 Innsbruck, Austria
[5] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
TURBULENT-FLOW; WAVY SURFACE; LEE WAVES; DISPERSION; MOUNTAIN; DYNAMICS; TERRAIN; FIELDS; WIND;
D O I
10.1175/2009JAS3016.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Dual-Doppler analysis of data from two coherent lidars during the Terrain-Induced Rotor Experiment (T-REX) allows the retrieval of flow structures, such as vortices, during mountain-wave events. The spatial and temporal resolution of this approach is sufficient to identify and track vortical motions on an elevated, cross-barrier plane in clear air. Assimilation routines or additional constraints such as two-dimensional continuity are not required. A relatively simple and quick least squares method forms the basis of the retrieval. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain wave boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Generally, observations suggest two classes of vortical motions: rotors and small-scale vortical structures. These two structures differ in scale and behavior. The level of coordination of the two lidars and the nature of the output (i.e., in range gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.
引用
收藏
页码:713 / 729
页数:17
相关论文
共 49 条
  • [1] Analysis and interpretation of instantaneous turbulent velocity fields
    Adrian, RJ
    Christensen, KT
    Liu, ZC
    [J]. EXPERIMENTS IN FLUIDS, 2000, 29 (03) : 275 - 290
  • [2] [Anonymous], 2001, ARSENIC DRINKING WAT, P15
  • [3] ARMIJO L, 1969, J ATMOS SCI, V26, P570, DOI 10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO
  • [4] 2
  • [5] Nocturnal cleansing flows in a tributary valley
    Banta, RM
    Shepson, PB
    Bottenheim, JW
    Anlauf, KG
    Wiebe, HA
    Gallant, A
    Biesenthal, T
    Olivier, LD
    Zhu, CJ
    McKendry, IG
    Steyn, DG
    [J]. ATMOSPHERIC ENVIRONMENT, 1997, 31 (14) : 2147 - 2162
  • [6] INFLUENCE OF CANYON-INDUCED FLOWS ON FLOW AND DISPERSION OVER ADJACENT PLAINS
    BANTA, RM
    OLIVIER, LD
    NEFF, WD
    LEVINSON, DH
    RUFFIEUX, D
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 1995, 52 (1-2) : 27 - 42
  • [7] Banta RM, 1996, J APPL METEOROL, V35, P330, DOI 10.1175/1520-0450(1996)035<0330:IOSSFF>2.0.CO
  • [8] 2
  • [9] Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment
    Calhoun, R.
    Heap, R.
    Princevac, M.
    Newsom, R.
    Fernando, H.
    Ligon, D.
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2006, 45 (08) : 1116 - 1126
  • [10] CALHOUN R, 2004, 5 C URB ENV VANC BC