Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent

被引:22
作者
Shen, Zifei [1 ]
Gao, Fashun [1 ]
Yang, Minbo [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2017年 / 68卷 / 03期
关键词
Choquard equation; Nonhomogeneous; Critical exponent; Hardy-Littlewood-Sobolev inequality; Multiple solutions; GROUND-STATE SOLUTIONS; EXISTENCE;
D O I
10.1007/s00033-017-0806-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following critical nonhomogeneous Choquard equation -Delta u = (f(Omega) vertical bar u(y)vertical bar(2 mu)*/vertical bar x-y vertical bar(mu) dy) vertical bar-u vertical bar(2 mu)*(-2) u + lambda u + f(x) in Omega, where Omega is a smooth bounded domain of R-N, 0 in interior of Omega, lambda is an element of R, N >= 7, 0 < mu < N, 2(mu)* = ( 2N - mu)/( N - 2) is the upper critical exponent in the sense of the Hardy- Littlewood- Sobolev inequality, and f( x) is a given function. Using variational methods, we obtain the existence of multiple solutions for the above problem when 0 < lambda < lambda(1), where lambda(1) is the first eigenvalue of -Delta in H-0(1) (Omega).
引用
收藏
页数:25
相关论文
共 37 条
[1]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[2]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[3]   Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method [J].
Alves, Claudianor O. ;
Yang, Minbo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (01) :23-58
[4]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]  
Brezis H., 1989, SCUOLA NORM SUP
[7]   EXISTENCE OF A NONTRIVIAL SOLUTION TO A STRONGLY INDEFINITE SEMILINEAR EQUATION [J].
BUFFONI, B ;
JEANJEAN, L ;
STUART, CA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (01) :179-186
[8]   INTERTWINING SEMICLASSICAL SOLUTIONS TO A SCHRODINGER-NEWTON SYSTEM [J].
Cingolani, Silvia ;
Clapp, Monica ;
Secchi, Simone .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (04) :891-908
[9]   Multiple solutions to a magnetic nonlinear Choquard equation [J].
Cingolani, Silvia ;
Clapp, Monica ;
Secchi, Simone .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02) :233-248
[10]   Semi-classical limit for Schrodinger equations with magnetic field and Hartree-type nonlinearities [J].
Cingolani, Silvia ;
Secchi, Simone ;
Squassina, Marco .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2010, 140 :973-1009