Computer Aided Bright Lesion Classification in Fundus Image Based on Feature Extraction

被引:2
作者
Bhargavi, V. Ratna [1 ]
Rajesh, V [1 ]
机构
[1] KLEF KL Deemed Be Univ, Koneru Lakshmaiah Educ Fdn, Dept Elect & Commun Engn, Guntur 522502, Andhra Prades, India
关键词
Diabetic retinopathy; SIFT; feature extraction; classification; LE-dimension reduction; DIABETIC-RETINOPATHY; ACTIVE CONTOURS; PHOTOGRAPHY; PREVALENCE; SNAKES; FLASH;
D O I
10.1142/S0218001418500349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a hybrid approach of fundus image classification for diabetic retinopathy (DR) lesions is proposed. Laplacian eigenmaps (LE), a nonlinear dimensionality reduction (NDR) technique is applied to a high-dimensional scale invariant feature transform (SIFT) representation of fundus image for lesion classification. The applied NDR technique gives a low-dimensional intrinsic feature vector for lesion classification in fundus images. The publicly available databases are used for demonstrating the implemented strategy. The performance of applied technique can be evaluated based on sensitivity, specificity and accuracy using Support vector classifier. Compared to other feature vectors, the implemented LE-based feature vector yielded better classification performance. The accuracy obtained is 96.6% for SIFT-LE-SVM.
引用
收藏
页数:15
相关论文
共 41 条
[1]   Automated Early Detection of Diabetic Retinopathy [J].
Abramoff, Michael D. ;
Reinhardt, Joseph M. ;
Russell, Stephen R. ;
Folk, James C. ;
Mahajan, Vinit B. ;
Niemeijer, Meindert ;
Quellec, Gwenole .
OPHTHALMOLOGY, 2010, 117 (06) :1147-1154
[2]   Multiscale AM-FM Methods for Diabetic Retinopathy Lesion Detection [J].
Agurto, Carla ;
Murray, Victor ;
Barriga, Eduardo ;
Murillo, Sergio ;
Pattichis, Marios ;
Davis, Herbert ;
Russell, Stephen ;
Abramoff, Michael ;
Soliz, Peter .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) :502-512
[3]  
[Anonymous], 2011, METHODS EVALUATE SEG
[4]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[5]   A GEOMETRIC MODEL FOR ACTIVE CONTOURS IN IMAGE-PROCESSING [J].
CASELLES, V ;
CATTE, F ;
COLL, T ;
DIBOS, F .
NUMERISCHE MATHEMATIK, 1993, 66 (01) :1-31
[6]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[7]   Automatic Assessment of Macular Edema From Color Retinal Images [J].
Deepak, K. Sai ;
Sivaswamy, Jayanthi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) :766-776
[8]   Flash photography enhancement via intrinsic relighting [J].
Eisemann, E ;
Durand, F .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :673-678
[9]   Automated grading for diabetic retinopathy: a large-scale audit using arbitration by clinical experts [J].
Fleming, Alan D. ;
Goatman, Keith A. ;
Philip, Sam ;
Prescott, Gordon J. ;
Sharp, Peter F. ;
Olson, John A. .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2010, 94 (12) :1606-1610
[10]   Exudate-based diabetic macular edema detection in fundus images using publicly available datasets [J].
Giancardo, Luca ;
Meriaudeau, Fabrice ;
Karnowski, Thomas P. ;
Li, Yaqin ;
Garg, Seema ;
Tobin, Kenneth W., Jr. ;
Chaum, Edward .
MEDICAL IMAGE ANALYSIS, 2012, 16 (01) :216-226