Content-based image quality assessment using semantic information and luminance differences

被引:6
|
作者
Qi, Huan [1 ]
Jiao, Shuhong [1 ]
Lin, Weisi [2 ]
Tang, Lin [1 ]
Shen, Weihe [3 ]
机构
[1] Harbin Engn Univ, Sch Informat & Commun Engn, Harbin, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
[3] Sci & Technol Space Phys Lab, Beijing, Peoples R China
关键词
SIMILARITY; RATIO;
D O I
10.1049/el.2014.1651
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A full-reference image quality assessment (FR-IQA) metric, with emphasis on semantic information changes in different image content areas, is presented. The changes on edge information, that can represent semantic information changes, are calculated based on the characteristics of different image content areas. Considering that edge changes cannot account for luminance changes while luminance changes does affect visual quality of images, the luminance changes are also incorporated into the design of the perceptual quality metric. Experimental results confirm that the proposed metric is consistent with human judgments of quality, and outperforms relevant state-of-the-art metrics across various distortion types.
引用
收藏
页码:1435 / U146
页数:2
相关论文
共 50 条
  • [1] A Content-based Image Retrieval System with Image Semantic
    Ma Ying
    Zhang Laomo
    Ma Jinxing
    MICRO NANO DEVICES, STRUCTURE AND COMPUTING SYSTEMS, 2011, 159 : 638 - 643
  • [2] Content-based image retrieval for big visual data using image quality assessment model
    Baisakhi Sur Phadikar
    Subro S. Thakur
    Goutam Kumar Maity
    Amit Phadikar
    CSI Transactions on ICT, 2017, 5 (1) : 45 - 51
  • [3] A semantic description for content-based image retrieval
    Wang, Bing
    Mang, Xin
    Zhao, Xiao-Yan
    Zang, Zhi-De
    Zhang, Hong-Xia
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 2466 - +
  • [4] Distributional semantic content-based image retrieval
    Khampachua, T
    Rivepiboon, W
    Rungsawag, A
    CISST'03: PROCEEDING OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS 1 AND 2, 2003, : 123 - 126
  • [5] A comprehensive assessment of content-based image retrieval using selected full reference image quality assessment algorithms
    Phadikar, Baisakhi Sur
    Phadikar, Amit
    Thakur, Subro S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 15619 - 15646
  • [6] A comprehensive assessment of content-based image retrieval using selected full reference image quality assessment algorithms
    Baisakhi Sur Phadikar
    Amit Phadikar
    Subro S. Thakur
    Multimedia Tools and Applications, 2021, 80 : 15619 - 15646
  • [7] Using semantic distance in a content-based heterogeneous information retrieval system
    El Sayed, Ahmad
    Hacid, Hakim
    Zighed, Djamel
    MINING COMPLEX DATA, 2008, 4944 : 224 - 237
  • [8] Content-based adaptive image denoising using spatial information
    Zuo, Zhiyong
    Hu, Jing
    Lan, Xia
    Liu, Li
    Yang, Weidong
    OPTIK, 2014, 125 (18): : 5093 - 5101
  • [9] A content-based image quality metric
    Gao, XB
    Wang, T
    Li, J
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS, 2005, 3642 : 231 - 240
  • [10] Semantic Content-Based Recommendations Using Semantic Graphs
    Guo, Weisen
    Kraines, Steven B.
    ADVANCES IN COMPUTATIONAL BIOLOGY, 2010, 680 : 653 - 659