A quadratic finite element wavelet Riesz basis

被引:7
|
作者
Rekatsinas, Nikolaos [1 ]
Stevenson, Rob [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
Wavelets; finite elements; Riesz bases; biorthogonality; vanishing moments; GENERAL MESHES; CONSTRUCTION; BASES; TRIANGULATIONS; PREWAVELETS; STABILITY;
D O I
10.1142/S0219691318500339
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, continuous piecewise quadratic finite element wavelets are constructed on general polygons in R-2. The wavelets are stable in H-s for vertical bar s vertical bar < 3/2 and have two vanishing moments. Each wavelet is a linear combination of 11 or 13 nodal basis functions. Numerically computed condition numbers for s is an element of {-1,0,1} are provided for the unit square.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A stochastic B-spline wavelet on the interval finite element method for beams
    Vadlamani, Shashank
    Arun, C. O.
    COMPUTERS & STRUCTURES, 2020, 233
  • [42] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Bin Han
    Zuowei Shen
    Constructive Approximation, 2009, 29 : 369 - 406
  • [43] Stability theorems for Fourier frames and wavelet Riesz bases
    Radu Balan
    Journal of Fourier Analysis and Applications, 1997, 3 : 499 - 504
  • [44] Daubechies wavelet finite element method and genetic algorithm for detection of pipe crack
    Wang, Y. M.
    Chen, X. F.
    He, Z. J.
    NONDESTRUCTIVE TESTING AND EVALUATION, 2011, 26 (01) : 87 - 99
  • [45] Finite element potentials
    Rodriguez, Ana Alonso
    Valli, Alberto
    APPLIED NUMERICAL MATHEMATICS, 2015, 95 : 2 - 14
  • [46] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Han, Bin
    Shen, Zuowei
    CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 369 - 406
  • [47] A Hybrid of Interval Wavelets and Wavelet Finite Element Model for Damage Detection in Structures
    Xiang, Jiawei
    Matsumoto, Toshiro
    Wang, Yanxue
    Jiang, Zhansi
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2011, 81 (3-4): : 269 - 294
  • [48] Stability theorems for Fourier frames and wavelet Riesz bases
    Balan, R
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (05) : 499 - 504
  • [49] Quadratic serendipity discontinuous finite element discretization for SN transport on arbitrary polygonal grids
    Hackemack, Michael W.
    Ragusa, Jean C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 : 188 - 212
  • [50] Renormalization in a wavelet basis
    Basak, Mrinmoy
    Ratabole, Raghunath
    PHYSICAL REVIEW D, 2023, 107 (03)