A quadratic finite element wavelet Riesz basis

被引:7
|
作者
Rekatsinas, Nikolaos [1 ]
Stevenson, Rob [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
Wavelets; finite elements; Riesz bases; biorthogonality; vanishing moments; GENERAL MESHES; CONSTRUCTION; BASES; TRIANGULATIONS; PREWAVELETS; STABILITY;
D O I
10.1142/S0219691318500339
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, continuous piecewise quadratic finite element wavelets are constructed on general polygons in R-2. The wavelets are stable in H-s for vertical bar s vertical bar < 3/2 and have two vanishing moments. Each wavelet is a linear combination of 11 or 13 nodal basis functions. Numerically computed condition numbers for s is an element of {-1,0,1} are provided for the unit square.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The finite volume element method with quadratic basis functions
    Liebau, F
    COMPUTING, 1996, 57 (04) : 281 - 299
  • [2] Increasing the efficiency of the use of wavelet-like finite element basis functions
    Tuksinvarajan, S
    Hutchcraft, WE
    Gordon, RK
    PROCEEDINGS OF THE THIRTY-FOURTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2002, : 142 - 146
  • [3] CONSTRUCTION OF A RIESZ WAVELET BASIS ON LOCALLY COMPACT ABELIAN GROUPS
    Satyapriya
    Kumar, Raj
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (02): : 255 - 274
  • [4] Error analysis of higher order wavelet-like basis functions in the finite element method
    Hutchcraft, WE
    Gordon, RK
    PROCEEDINGS OF THE THIRTY-FOURTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2002, : 138 - 141
  • [5] Finite-element wavelets on manifolds
    Nguyen, H
    Stevenson, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (01) : 149 - 173
  • [6] Multivariable wavelet finite element for flexible skew thin plate analysis
    Zhang XingWu
    Chen XueFeng
    Yang ZhiBo
    Shen ZhongJie
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (08) : 1532 - 1540
  • [7] Two-dimensional higher-order wavelet-like basis functions in the finite element method
    Hutchcraft, WE
    Gordon, RK
    PROCEEDINGS OF THE THIRTY-FOURTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2002, : 147 - 151
  • [8] Frames, Riesz bases, and discrete Gabor/wavelet expansions
    Christensen, O
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 38 (03) : 273 - 291
  • [9] Multivariable Wavelet Finite Element for Plane Truss Analysis
    Zhang, Xingwu
    Liu, Jixuan
    Chen, Xuefeng
    Yang, Zhibo
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 109 (05): : 405 - 425
  • [10] ON HIGH ORDER FINITE ELEMENT SPACES OF DIFFERENTIAL FORMS
    Christiansen, Snorre H.
    Rapetti, Francesca
    MATHEMATICS OF COMPUTATION, 2016, 85 (298) : 517 - 548