Transmit Beampattern Synthesis for Frequency Diverse Array With Particle Swarm Frequency Offset Optimization

被引:52
作者
Liao, Yi [1 ]
Wang, Jian [2 ]
Liu, Qing Huo [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
基金
中国国家自然科学基金;
关键词
Frequency modulation; Optimization; Time-frequency analysis; Phased arrays; Particle swarm optimization; Frequency synthesizers; Frequency diversity; Beampattern synthesis; frequency diverse array (FDA); frequency offset; particle swarm optimization (PSO); GENETIC ALGORITHMS; RADAR; ANTENNA;
D O I
10.1109/TAP.2020.3027576
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Different from the conventional phased array radar, a frequency diverse array (FDA) applies additional frequency shift across the array elements, yielding a range-angle-dependent transmit beampattern that provides a huge potential opportunity for target estimation and range-dependent clutter and interference suppression. Generally, the conventional FDA employs a linear small frequency increment, forming a time-varying "S"-shape range-angle beampattern, which is range-angle coupled. In this article, a range-angle transmit beampattern synthesis method for FDA based on frequency offset optimization is proposed. Particle swarm optimization (PSO) is adopted in the FDA element frequency increment design to achieve a dot-shaped transmit beampattern. Meanwhile, matched weights are designed for time-modulation compensation. Numerical simulation results demonstrate that the proposed approach achieves better time-invariant performance over other FDA frameworks.
引用
收藏
页码:892 / 901
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2007, P IEEE INT C EL ADV
[2]   Frequency diverse array radars [J].
Antonik, Paul ;
Wicks, Michael C. ;
Griffiths, Hugh D. ;
Baker, Christopher J. .
2006 IEEE RADAR CONFERENCE, VOLS 1 AND 2, 2006, :215-+
[3]   Genetic algorithms in the design and optimization of antenna array patterns [J].
Ares-Pena, FJ ;
Rodriguez-Gonzalez, JA ;
Villanueva-Lopez, E ;
Rengarajan, SR .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1999, 47 (03) :506-510
[4]   Forward-looking radar GMTI benefits using a linear frequency diverse array [J].
Baizert, P. ;
Hale, T. B. ;
Temple, M. A. ;
Wicks, M. C. .
ELECTRONICS LETTERS, 2006, 42 (22) :1311-1312
[5]   Particle swarm optimization versus genetic algorithms for phased array synthesis [J].
Boeringer, DW ;
Werner, DH .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (03) :771-779
[6]   Transmit Beampattern Synthesis for the FDA Radar [J].
Chen, Baoxin ;
Chen, Xiaolong ;
Huang, Yong ;
Guan, Jian .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (01) :98-101
[7]  
Eberhart RC, 2000, IEEE C EVOL COMPUTAT, P84, DOI 10.1109/CEC.2000.870279
[8]  
Haupt RL, 2004, PRACTICAL GENETIC AL, DOI [DOI 10.1002/0471671746, 10.1002/0471671746]
[9]   Analysis of Range-Angle Coupled Beamforming with Frequency-Diverse Chirps [J].
Higgins, Thomas ;
Blunt, Shannon D. .
2009 INTERNATIONAL WAVEFORM DIVERSITY AND DESIGN CONFERENCE, 2009, :140-144
[10]  
Huang JJ, 2008, IEEE ANTENNAS PROP, P1982