Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping

被引:49
作者
Sun, Fuqin [1 ]
Wang, Mingxin
机构
[1] Tianjin Univ Technol & Educ, Dept Math & Phys, Tianjin 300222, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperbolic system; damping; global solutions; existence and nonexistence; decay estimates;
D O I
10.1016/j.na.2006.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns with the Cauchy problem for the damped nonlinear hyperbolic system [GRAPHICS] where p, q >= 1 and satisfy pq > 1. We shall prove that if max {(1+p)/(pq-1), (1+q)/(pq-1)} < (N)/(2) for N = 1 or 3, then the solution with small initial data exists globally in time and satisfies the decay estimates parallel to u(t)parallel to(infinity) <= C(1 + t)(-sigma) and parallel to v(t)parallel to(infinity) <= C(1 + t)(-sigma)' for some positive constants a and a, while, if max {(1+p)/(pq-1), (1+q)/(pq-1)} >= (N)/(2) for N >= 1, then every solution with initial data having positive average value does not exist globally. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2889 / 2910
页数:22
相关论文
共 22 条
[1]  
Cui S, 2001, NONLINEAR ANAL-THEOR, V43, P293
[2]   FINITE DIMENSIONAL EXPONENTIAL ATTRACTORS FOR SEMILINEAR WAVE-EQUATIONS WITH DAMPING [J].
EDEN, A ;
MILANI, AJ ;
NICOLAENKO, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 169 (02) :408-419
[3]   BOUNDEDNESS AND BLOW UP FOR A SEMILINEAR REACTION DIFFUSION SYSTEM [J].
ESCOBEDO, M ;
HERRERO, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 89 (01) :176-202
[4]  
FEIREISL E, 1993, COMMUN PART DIFF EQ, V18, P1981
[5]   Finite energy travelling waves for nonlinear damped wave equations [J].
Feireisl, E .
QUARTERLY OF APPLIED MATHEMATICS, 1998, 56 (01) :55-70
[6]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[7]   Critical exponents for semilinear dissipative wave equations in RN [J].
Ikehata, R ;
Ohta, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) :87-97
[8]   Some remarks on the wave equations with nonlinear damping and source terms [J].
Ikehata, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) :1165-1175
[9]   ON THE DECAY PROPERTY OF SOLUTIONS TO THE CAUCHY-PROBLEM OF THE SEMILINEAR WAVE-EQUATION WITH A DISSIPATIVE TERM [J].
KAWASHIMA, S ;
NAKAO, M ;
ONO, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1995, 47 (04) :617-653
[10]  
Kirane M, 2002, ADV NONLINEAR STUD, V2, P41