Nonlocal Self-Similarity-Based Hyperspectral Remote Sensing Image Denoising With 3-D Convolutional Neural Network

被引:30
作者
Wang, Zhicheng [1 ]
Ng, Michael K. [2 ]
Zhuang, Lina [3 ]
Gao, Lianru [3 ]
Zhang, Bing [4 ,5 ]
机构
[1] Univ Hong Kong, Dept Earth Sci, Lab Space Res, Hong Kong, Peoples R China
[2] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
3DCNN; deep learning; denoising; hyperspectral image restoration; nonlocal patch (cube); RANK MATRIX RECOVERY; NOISE REMOVAL; REDUCTION; KERNEL; CNN;
D O I
10.1109/TGRS.2022.3182144
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, deep-learning-based denoising methods for hyperspectral images (HSIs) have been comprehensively studied and achieved impressive performance because they can effectively extract complex and nonlinear image features. Compared with deep-learning-based methods, the nonlocal similarity-based denoising methods are more suitable for images containing edges or regular textures. We propose a powerful HSI denoising method, termed non-local 3-D convolutional neural network (NL-3DCNN), combining traditional machine learning and deep learning techniques. NL-3DCNN exploits the high spectral correlation of an HSI using subspace representation, and the corresponding representation coefficients are termed eigenimages. The high spatial correlation in eigenimages is exploited by grouping nonlocal similar patches, which are denoised by a 3-D convolutional neural network. The numerical and graphical denoising results of the simulated and real data show that the proposed method is superior to the state-of-the-art methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising
    Zou, Bei-Ji
    Guo, Yun-Di
    He, Qi
    Ouyang, Ping-Bo
    Liu, Ke
    Chen, Zai-Liang
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2018, 33 (04) : 838 - 848
  • [22] 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising
    Bei-Ji Zou
    Yun-Di Guo
    Qi He
    Ping-Bo Ouyang
    Ke Liu
    Zai-Liang Chen
    Journal of Computer Science and Technology, 2018, 33 : 838 - 848
  • [23] Global-Local 3-D Convolutional Transformer Network for Hyperspectral Image Classification
    Qi, Wenchao
    Huang, Changping
    Wang, Yibo
    Zhang, Xia
    Sun, Weiwei
    Zhang, Lifu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [24] Hyperspectral Remote Sensing Images Classification Using Fully Convolutional Neural Network
    Tun, Nyan Linn
    Gavrilov, Alexander
    Tun, Naing Min
    Trieu, Do Minh
    Aung, Htet
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 2166 - 2170
  • [25] Energy based denoising convolutional neural network for image enhancement
    Karthikeyan, V.
    Raja, E.
    Pradeep, D.
    IMAGING SCIENCE JOURNAL, 2024, 72 (01) : 105 - 120
  • [26] Spatial and Spectral-Channel Attention Network for Denoising on Hyperspectral Remote Sensing Image
    Dou, Hong-Xia
    Pan, Xiao-Miao
    Wang, Chao
    Shen, Hao-Zhen
    Deng, Liang-Jian
    REMOTE SENSING, 2022, 14 (14)
  • [27] MAC-Net: Model-Aided Nonlocal Neural Network for Hyperspectral Image Denoising
    Xiong, Fengchao
    Zhou, Jun
    Zhao, Qinling
    Lu, Jianfeng
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [28] Evolving Block-Based Convolutional Neural Network for Hyperspectral Image Classification
    Lu, Zhenyu
    Liang, Shaoyang
    Yang, Qiang
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [29] Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network
    Zhang Zhehan
    Fang Wei
    Du Lili
    Qiao Yanli
    Zhang Dongying
    Ding Guoshen
    ACTA OPTICA SINICA, 2020, 40 (03)
  • [30] A Method Noise-Based Convolutional Neural Network Technique for CT Image Denoising
    Singh, Prabhishek
    Diwakar, Manoj
    Gupta, Reena
    Kumar, Sarvesh
    Chakraborty, Alakananda
    Bajal, Eshan
    Jindal, Muskan
    Shetty, Dasharathraj K.
    Sharma, Jayant
    Dayal, Harshit
    Naik, Nithesh
    Paul, Rahul
    ELECTRONICS, 2022, 11 (21)