The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP

被引:8
作者
Brecht, M
Sewald, K
Schiene, K
Keen, G
Fricke, M
Sauer, M
Niehaus, K [1 ]
机构
[1] Univ Bielefeld, Fac Biol, D-33501 Bielefeld, Germany
[2] Univ Bielefeld, Fac Phys, D-33501 Bielefeld, Germany
关键词
medicago sativa; GTPases; surface plasmon resonance (SPR); fluorescence resonance energy transfer (FRET); Ms-Rac1; Ms-Rac4; GTP-binding; biacore;
D O I
10.1016/j.jbiotec.2004.04.030
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Using an RT-PCR approach a cDNA clone, designated Ms-Rac4 and putatively coding for a small GTPase was isolated from Medicago sativa. Ms-Rac4 and the earlier described Ms-Rac1 [Mol Gen. Genet. 263 (2000) 761] belong to the class of GTP-binding Rho of plants (Rop) proteins. At the amino acid level they display all conserved regions that are common to GTP-binding proteins. Phylogenetically both are located in the group la, but within this group they are well-separated. Computed structure models of both proteins revealed a high degree of structural conservation. Particularly the switch I and switch II region are 100% conserved between Ms-Rac1 and Ms-Rac4 and highly conserved as compared to other Rac-like G-proteins. Both GTPases differ in structure within the fourth loop and the fourth helix. GTP-binding properties of the heterologously expressed Ms-Rac1 and Ms-Rac4 was shown by fluorescence resonance energy transfer (FRET) using mantGTP and by surface plasmon resonance (SPR). By this method the specificity of the G-protein/GTP interaction was shown and the inhibitory effect of GTP, EDTA and Mg2+ on the Ms-Rac1 and Ms-Rac4 binding to immobilized GTP was characterized. Ms-Rac1 and Ms-Rac4 exhibited the same affinity to GTP and are similarly affected by GTP, EDTA and Mg2+. Thus, the predicted structural differences do not result in different GTP-binding properties of Ms-Rac1 and Ms-Rac4. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 52 条
[1]   Small GTPase 'Rop': molecular switch for plant defense responses [J].
Agrawal, GK ;
Iwahashi, I ;
Rakwal, R .
FEBS LETTERS, 2003, 546 (2-3) :173-180
[2]   PROTEIN DATABASE SEARCHES FOR MULTIPLE ALIGNMENTS [J].
ALTSCHUL, SF ;
LIPMAN, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) :5509-5513
[3]  
Bittar E.E., 1997, PR MED BIOL A&B, P255
[4]  
BOLLER T, 1995, ANNU REV PLANT PHYS, V46, P189, DOI 10.1146/annurev.arplant.46.1.189
[5]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0
[6]   THE GTPASE SUPERFAMILY - A CONSERVED SWITCH FOR DIVERSE CELL FUNCTIONS [J].
BOURNE, HR ;
SANDERS, DA ;
MCCORMICK, F .
NATURE, 1990, 348 (6297) :125-132
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]  
BURSTEIN ES, 1992, J BIOL CHEM, V267, P22715
[9]  
Clegg Robert M., 1995, Current Opinion in Biotechnology, V6, P103, DOI 10.1016/0958-1669(95)80016-6
[10]   BIOLOGICAL AND BIOCHEMICAL-PROPERTIES OF HUMAN RASH GENES MUTATED AT CODON-61 [J].
DER, CJ ;
FINKEL, T ;
COOPER, GM .
CELL, 1986, 44 (01) :167-176